本课程(以及本教材)的目标是为最广泛使用的学习架构展示学习理论的旧成果和新成果。本课程面向的是理论导向型的学生,以及那些想要获得基本数学理解的学生,这些学生在机器学习和相关领域中使用了大量的学习方法,如计算机视觉或自然语言处理。为了证明从第一性原理得出的许多结果,将作出特别的努力,同时使阐明尽可能简单。这将自然导致选择的关键结果,在简单但相关的实例中展示学习理论的重要概念。在没有证明的情况下,也将给出一些一般的结果。当然,第一性原理的概念是主观的,我将假定有良好的线性代数、概率论和微分的知识。

https://www.di.ens.fr/~fbach/learning_theory_class/index.html

目录内容:

无线数据学习 Learning with infinite data (population setting) -Decision theory (loss, risk, optimal predictors) -Decomposition of excess risk into approximation and estimation errors -No free lunch theorems -Basic notions of concentration inequalities (MacDiarmid, Hoeffding, Bernstein) 线性最小二乘回归 Liner Least-squares regression -Guarantees in the fixed design settings (simple in closed-form) -Ridge regression: dimension independent bounds -Guarantees in the random design settings -Lower bound of performance 经验风险最小化 Empirical risk minimization -Convexification of the risk -Risk decomposition -Estimation error: finite number of hypotheses and covering numbers -Rademacher complexity -Penalized problems 机器学习的优化 Optimization for machine learning -Gradient descent -Stochastic gradient descent -Generalization bounds through stochastic gradient descent 局部平均技术 Local averaging techniques -Partition estimators -Nadaraya-Watson estimators -K-nearest-neighbors -Universal consistency 核方法 Kernel methods -Kernels and representer theorems -Algorithms -Analysis of well-specified models -Sharp analysis of ridge regression -Universal consistency 模型选择 Model selection -L0 penalty -L1 penalty -High-dimensional estimation 神经网络 Neural networks -Single hidden layer neural networks

  • Estimation error
  • Approximation properties and universality 特别主题 Special topics -Generalization/optimization properties of infinitely wide neural networks -Double descent
成为VIP会员查看完整内容
0
45

相关内容

【导读】本文档包含加州大学伯克利分校机器学习Jonathan Shewchuk入门课程的课堂讲稿。它涵盖了许多分类和回归的方法,以及聚类和降维的方法。简洁明了,是非常合适的机器学习入门学习材料。

内容目录包括: 介绍 线性分类器和感知器 感知器学习;最大边缘分类器 软边缘支持向量机;特性 机器学习抽象和数值优化 决策理论;生成和判别模型 高斯判别分析,包括QDA和LDA 特征向量与各向异性多元正态分布 各向异性高斯,最大似然估计,QDA和LDA 回归,包括最小二乘线性回归和逻辑回归 更多的回归;牛顿法;ROC曲线 统计的理由;偏见方差分解 收缩:脊线回归,子集选择,套索 内核的诀窍 决策树 更多的决策树、集成学习和随机森林 神经网络 神经元;神经网络的变化 更好的神经网络训练;卷积神经网络 无监督学习与主成分分析 奇异值分解;聚类 光谱图聚类 学习理论 多个特征向量;潜在的因素分析;最近的邻居 更快的最近邻居:Voronoi图和k-d树

成为VIP会员查看完整内容
0
33

We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-fragile graph classes, a property that is true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time approximation schemes for these problems in all classes with sublinear separators.

0
0
下载
预览

Stochastic gradient descent (SGD) is one of the most popular algorithms in modern machine learning. The noise encountered in these applications is different from that in many theoretical analyses of stochastic gradient algorithms. In this article, we discuss some of the common properties of energy landscapes and stochastic noise encountered in machine learning problems, and how they affect SGD-based optimization. In particular, we show that the learning rate in SGD with machine learning noise can be chosen to be small, but uniformly positive for all times if the energy landscape resembles that of overparametrized deep learning problems. If the objective function satisfies a Lojasiewicz inequality, SGD converges to the global minimum exponentially fast, and even for functions which may have local minima, we establish almost sure convergence to the global minimum at an exponential rate from any finite energy initialization. The assumptions that we make in this result concern the behavior where the objective function is either small or large and the nature of the gradient noise, but the energy landscape is fairly unconstrained on the domain where the objective function takes values in an intermediate regime.

0
0
下载
预览

学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
65

机器学习是数学统计和计算机科学交叉的跨学科领域。机器学习研究统计模型和算法,以从经验数据中得出预测因子或有意义的模式。机器学习技术主要应用于搜索引擎、语音识别和自然语言处理、图像检测、机器人技术等领域。在我们的课程中,我们将讨论以下问题:学习的数学模型是什么?如何量化一个学习问题的难度/难度/复杂性?如何选择学习模型和学习算法?如何衡量机器学习的成功?

我们的课程大纲:

  1. 监督学习,非监督学习,强化学习。

  2. 机器学习泛化能力

  3. 支持向量机,核机

  4. 神经网络和深度学习

成为VIP会员查看完整内容
0
31

这本书提供了一个广泛的不确定性决策的算法介绍。我们涵盖了与决策相关的各种主题,介绍了潜在的数学问题公式和解决它们的算法。

本文面向高级本科生、研究生和专业人员。本书要求具有一定的数学基础,并假定预先接触过多变量微积分、线性代数和概率概念。附录中提供了一些复习材料。这本书特别有用的学科包括数学、统计学、计算机科学、航空航天、电气工程和运筹学。

这本教科书的基础是算法,它们都是用Julia编程语言实现的。这本允许免费使用与本书相关的代码片段,条件是必须确认代码的来源。我们预计其他人可能想把这些算法翻译成其他编程语言。随着翻译版本的发布,我们将从该书的网页上链接到它们。

许多重要的问题都涉及不确定性下的决策,包括飞机碰撞避免、灾害管理和灾难反应。在设计自动化决策系统或决策支持系统时,在做出或推荐决策时考虑各种不确定性来源是很重要的。考虑到这些不确定性的来源并仔细平衡系统的多个目标是非常具有挑战性的。我们将从计算的角度讨论这些挑战,旨在提供决策模型和计算方法背后的理论。本章介绍了不确定性下的决策问题,提供了一些应用实例,并概述了可能的计算方法的空间。本章总结了各种学科对我们理解智能决策的贡献,并强调了潜在社会影响的领域。我们以本书其余部分的大纲结束。

https://algorithmsbook.com/

Introduction

  • PART I: PROBABILISTIC REASONING Representation
  • PART II: SEQUENTIAL PROBLEMS Exact Solution Methods
  • PART III: MODEL UNCERTAINTY Exploration and Exploitation
  • PART V: MULTIAGENT SYSTEMS Multiagent Reasoning
成为VIP会员查看完整内容
0
86

这门课的目的是为最广泛使用的学习架构阐述学习理论的最新结果。本课程面向以理论为导向的学生,以及那些想要对整个硕士课程中使用的算法有基本数学理解的学生。

我们将特别从第一性原理证明许多结果,同时保持阐述尽可能简单。这将自然地导致一个关键结果的选择,以简单但相关的实例来展示学习理论中的重要概念。在没有证明的情况下,也将给出一些一般的结果。

本课程分为9节,每节3小时,除了最后一节专门介绍最近的学习理论成果外,每节都有一个精确的主题。见下面的暂定时间表。

目录内容:

  1. 无线数据学习 Learning with infinite data (population setting)
  • Decision theory (loss, risk, optimal predictors)
  • Decomposition of excess risk into approximation and estimation errors
  • No free lunch theorems
  • Basic notions of concentration inequalities (MacDiarmid, Hoeffding, Bernstein)
  1. 线性最小二乘回归 Linear least-squares regression
  • Guarantees in the fixed design settings (simple in closed form)
  • Guarantees in the random design settings
  • Ridge regression: dimension independent bounds
  1. 经典风险分解 Classical risk decomposition
  • Approximation error
  • Convex surrogates
  • Estimation error through covering numbers (basic example of ellipsoids)
  • Modern tools (no proof): Rademacher complexity, Gaussian complexity (+ Slepian/Lipschitz)
  • Minimax rates (at least one proof)
  1. 机器学习优化 Optimization for machine learning
  • Gradient descent
  • Stochastic gradient descent
  • Generalization bounds through stochastic gradient descent
  1. 局部平均技术 Local averaging techniques
  • Kernel density estimation
  • Nadaraya-Watson estimators (simplest proof to be found with apparent curse of dimensionality)
  • K-nearest-neighbors
  • Decision trees and associated methods
  1. 核方法 Kernel methods
  • Modern analysis of non-parametric techniques (simplest proof with results depending on s and d
  1. 模型选择 Model selection
  • L0 penalty with AIC
  • L1 penalty
  • High-dimensional estimation
  1. 神经方法 Neural networks
  • Approximation properties (simplest approximation result)
  • Two layers
  • Deep networks
  1. 特别话题 Special topics
  • Generalization/optimization properties of infinitely wide neural networks
  • Double descent
成为VIP会员查看完整内容
0
32

本文介绍了一阶优化方法及其在机器学习中的应用。这不是一门关于机器学习的课程(特别是它不涉及建模和统计方面的考虑),它侧重于使用和分析可以扩展到具有大量参数的大型数据集和模型的廉价方法。这些方法都是围绕“梯度下降”的概念而变化的,因此梯度的计算起着主要的作用。本课程包括最优化问题的基本理论性质(特别是凸分析和一阶微分学)、梯度下降法、随机梯度法、自动微分、浅层和深层网络。

成为VIP会员查看完整内容
0
74

【导读】UC.Berkeley CS189 《Introduction to Machine Learning》是面向初学者的机器学习课程在本指南中,我们创建了一个全面的课程指南,以便与学生和公众分享我们的知识,并希望吸引其他大学的学生对伯克利的机器学习课程感兴趣。

讲义目录:

  • Note 1: Introduction

  • Note 2: Linear Regression

  • Note 3: Features, Hyperparameters, Validation

  • Note 4: MLE and MAP for Regression (Part I)

  • Note 5: Bias-Variance Tradeoff

  • Note 6: Multivariate Gaussians

  • Note 7: MLE and MAP for Regression (Part II)

  • Note 8: Kernels, Kernel Ridge Regression

  • Note 9: Total Least Squares

  • Note 10: Principal Component Analysis (PCA)

  • Note 11: Canonical Correlation Analysis (CCA)

  • Note 12: Nonlinear Least Squares, Optimization

  • Note 13: Gradient Descent Extensions

  • Note 14: Neural Networks

  • Note 15: Training Neural Networks

  • Note 16: Discriminative vs. Generative Classification, LS-SVM

  • Note 17: Logistic Regression

  • Note 18: Gaussian Discriminant Analysis

  • Note 19: Expectation-Maximization (EM) Algorithm, k-means Clustering

  • Note 20: Support Vector Machines (SVM)

  • Note 21: Generalization and Stability

  • Note 22: Duality

  • Note 23: Nearest Neighbor Classification

  • Note 24: Sparsity

  • Note 25: Decision Trees and Random Forests

  • Note 26: Boosting

  • Note 27: Convolutional Neural Networks (CNN)

讨论目录:

  • Discussion 0: Vector Calculus, Linear Algebra (solution)

  • Discussion 1: Optimization, Least Squares, and Convexity (solution)

  • Discussion 2: Ridge Regression and Multivariate Gaussians (solution)

  • Discussion 3: Multivariate Gaussians and Kernels (solution)

  • Discussion 4: Principal Component Analysis (solution)

  • Discussion 5: Least Squares and Kernels (solution)

  • Discussion 6: Optimization and Reviewing Linear Methods (solution)

  • Discussion 7: Backpropagation and Computation Graphs (solution)

  • Discussion 8: QDA and Logistic Regression (solution)

  • Discussion 9: EM (solution)

  • Discussion 10: SVMs and KNN (solution)

  • Discussion 11: Decision Trees (solution)

  • Discussion 12: LASSO, Sparsity, Feature Selection, Auto-ML (solution)

讲义下载链接:https://pan.baidu.com/s/19Zmws53BUzjSvaDMEiUhqQ 密码:u2xs

成为VIP会员查看完整内容
0
98
小贴士
相关VIP内容
专知会员服务
65+阅读 · 2月25日
专知会员服务
31+阅读 · 2月7日
专知会员服务
32+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年6月27日
专知会员服务
98+阅读 · 2020年1月16日
相关论文
Alain Desgagné,Pierre Lafaye de Micheaux,Frédéric Ouimet
0+阅读 · 5月10日
Yiming Xu,Akil Narayan
0+阅读 · 5月10日
Sho Takemori,Masahiro Sato
0+阅读 · 5月10日
Alexander Barg,Peter Boyvalenkov,Maya Stoyanova
0+阅读 · 5月7日
Diego Cifuentes,Ankur Moitra
0+阅读 · 5月7日
Brian Brubach,Nathaniel Grammel,David G. Harris,Aravind Srinivasan,Leonidas Tsepenekas,Anil Vullikanti
0+阅读 · 5月6日
Daniel Vial,Advait Parulekar,Sanjay Shakkottai,R. Srikant
0+阅读 · 5月4日
Kevin Scaman,Francis Bach,Sébastien Bubeck,Yin Tat Lee,Laurent Massoulié
7+阅读 · 2018年6月1日
Top