A grounded 1-bend string graph is an intersection graph of a set of polygonal lines, each with one bend, such that the lines lie above a common horizontal line $\ell$ and have exactly one endpoint on $\ell$. We show that the problem of finding a maximum clique in a grounded 1-bend string graph is APX-hard, even for strictly $y$-monotone strings. For general 1-bend strings, the problem remains APX-hard even if we restrict the position of the bends and end-points to lie on at most three parallel horizontal lines. We give fast algorithms to compute a maximum clique for different subclasses of grounded segment graphs, which are formed by restricting the strings to various forms of $L$-shapes.
翻译:底部 1 字形字符串图是一组多边形线的交叉图,每条线有一个弯曲,这样线线就位于一条共同水平线上$\ ell$上方,且在$\ ell$上有一个完全的终点。我们显示,在底部 1 字形字符串图中找到一个最大线条的问题在于APX-hard, 即使是严格的$y$- monotone字符串。对于普通的 1 字形字符串来说,问题仍然是 APX- hard, 即使我们把弯曲和终点的位置限制在最多三个平行水平线上。我们给出快速算法来计算不同底部段图小类的最大线条, 它们是通过将字符串限制为$- $- shape 的各种形式而形成的。