A grounded 1-bend string graph is an intersection graph of a set of polygonal lines, each with one bend, such that the lines lie above a common horizontal line $\ell$ and have exactly one endpoint on $\ell$. We show that the problem of finding a maximum clique in a grounded 1-bend string graph is APX-hard, even for strictly $y$-monotone strings. For general 1-bend strings, the problem remains APX-hard even if we restrict the position of the bends and end-points to lie on at most three parallel horizontal lines. We give fast algorithms to compute a maximum clique for different subclasses of grounded segment graphs, which are formed by restricting the strings to various forms of $L$-shapes.


翻译:底部 1 字形字符串图是一组多边形线的交叉图,每条线有一个弯曲,这样线线就位于一条共同水平线上$\ ell$上方,且在$\ ell$上有一个完全的终点。我们显示,在底部 1 字形字符串图中找到一个最大线条的问题在于APX-hard, 即使是严格的$y$- monotone字符串。对于普通的 1 字形字符串来说,问题仍然是 APX- hard, 即使我们把弯曲和终点的位置限制在最多三个平行水平线上。我们给出快速算法来计算不同底部段图小类的最大线条, 它们是通过将字符串限制为$- $- shape 的各种形式而形成的。

0
下载
关闭预览

相关内容

专知会员服务
92+阅读 · 2021年6月3日
专知会员服务
26+阅读 · 2021年4月2日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
专知会员服务
124+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关VIP内容
专知会员服务
92+阅读 · 2021年6月3日
专知会员服务
26+阅读 · 2021年4月2日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
专知会员服务
124+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员