We present a comparative study of multi-agent reinforcement learning (MARL) algorithms for cooperative warehouse robotics. We evaluate QMIX and IPPO on the Robotic Warehouse (RWARE) environment and a custom Unity 3D simulation. Our experiments reveal that QMIX's value decomposition significantly outperforms independent learning approaches (achieving 3.25 mean return vs. 0.38 for advanced IPPO), but requires extensive hyperparameter tuning -- particularly extended epsilon annealing (5M+ steps) for sparse reward discovery. We demonstrate successful deployment in Unity ML-Agents, achieving consistent package delivery after 1M training steps. While MARL shows promise for small-scale deployments (2-4 robots), significant scaling challenges remain. Code and analyses: https://pallman14.github.io/MARL-QMIX-Warehouse-Robots/


翻译:本文对用于协作式仓储机器人的多智能体强化学习算法进行了比较研究。我们在Robotic Warehouse环境及自定义Unity 3D仿真平台上评估了QMIX与IPPO算法。实验表明:QMIX的价值分解机制显著优于独立学习方法(平均回报达3.25,而改进版IPPO仅为0.38),但需要大量超参数调优——特别是针对稀疏奖励发现需进行扩展的ε退火处理(超过500万步)。我们成功在Unity ML-Agents中实现了部署,经过100万步训练后实现了稳定的包裹配送。虽然多智能体强化学习在小规模部署(2-4台机器人)中展现出潜力,但仍面临显著的扩展性挑战。代码与分析见:https://pallman14.github.io/MARL-QMIX-Warehouse-Robots/

0
下载
关闭预览

相关内容

论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员