Auto-encoding Variational Bayes (AEVB) is a powerful and general algorithm for fitting latent variable models (a promising direction for unsupervised learning), and is well-known for training the Variational Auto-Encoder (VAE). In this tutorial, we focus on motivating AEVB from the classic Expectation Maximization (EM) algorithm, as opposed to from deterministic auto-encoders. Though natural and somewhat self-evident, the connection between EM and AEVB is not emphasized in the recent deep learning literature, and we believe that emphasizing this connection can improve the community's understanding of AEVB. In particular, we find it especially helpful to view (1) optimizing the evidence lower bound (ELBO) with respect to inference parameters as approximate E-step and (2) optimizing ELBO with respect to generative parameters as approximate M-step; doing both simultaneously as in AEVB is then simply tightening and pushing up ELBO at the same time. We discuss how approximate E-step can be interpreted as performing variational inference. Important concepts such as amortization and the reparametrization trick are discussed in great detail. Finally, we derive from scratch the AEVB training procedures of a non-deep and several deep latent variable models, including VAE, Conditional VAE, Gaussian Mixture VAE and Variational RNN. It is our hope that readers would recognize AEVB as a general algorithm that can be used to fit a wide range of latent variable models (not just VAE), and apply AEVB to such models that arise in their own fields of research. PyTorch code for all included models are publicly available.
翻译:自动编码变异贝亚( AEVB) 是用于安装潜伏变异模型的强大和一般的算法( 为不受监督的学习提供有希望的方向), 并且对于培训变异自动编码( VAE) 也很有名。 在这个教程中, 我们的重点是从经典期望最大化算法( EM) 中激励 AEVB, 而不是从确定性的自动编码算法 。 尽管在近期深层次的学习文献中, EM 和 AEVB 之间的关联并不十分明显, 而且我们认为强调这种关联可以提高社区对 AEVB 的认知。 特别是, 我们发现特别有帮助看到 (1) 将证据的下限( ELOB) 参数优化为近似于 EP级, (2) 优化 ELB 的变异位参数为近似M级 ; 同时, 与 AEVB 的算法是简单的, 将EVB 相近似值转换为直径直观的变异性变异模型, 我们讨论的是, 亚的变异性变异性变式的变式的变异性变式变式的变式模型, 以及变式变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式, 我们变式的变式的变式的变式, 在最后式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式, 我们的变式的变式, 我们的变式的变式的变式在最后的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式