Connected decision boundaries are useful in several tasks like image segmentation, clustering, alpha-shape or defining a region in nD-space. However, the machine learning literature lacks methods for generating connected decision boundaries using neural networks. Thresholding an invex function, a generalization of a convex function, generates such decision boundaries. This paper presents two methods for constructing invex functions using neural networks. The first approach is based on constraining a neural network with Gradient Clipped-Gradient Penality (GCGP), where we clip and penalise the gradients. In contrast, the second one is based on the relationship of the invex function to the composition of invertible and convex functions. We employ connectedness as a basic interpretation method and create connected region-based classifiers. We show that multiple connected set based classifiers can approximate any classification function. In the experiments section, we use our methods for classification tasks using an ensemble of 1-vs-all models as well as using a single multiclass model on larger-scale datasets. The experiments show that connected set-based classifiers do not pose any disadvantage over ordinary neural network classifiers, but rather, enhance their interpretability. We also did an extensive study on the properties of invex function and connected sets for interpretability and network morphism with experiments on simulated and real-world data sets. Our study suggests that invex function is fundamental to understanding and applying locality and connectedness of input space which is useful for various downstream tasks.


翻译:连接的决定界限在图像分割、 集群、 字母形状或定义 nD- 空间区域等若干任务中有用。 但是, 机器学习文献缺乏使用神经网络生成连接的决定界限的方法 。 我们使用一个 invex 函数, 概括一个 convex 函数, 生成这样的决定界限 。 本文展示了使用神经网络构建 Invex 函数的两种方法 。 第一种方法是限制一个神经网络, 使用“ 梯度” 的精度 Clip- great- great Primeity( GCGP), 我们在这里对梯度进行剪贴切和惩罚。 相比之下, 第二种则是基于 信性 函数 的内向性, 我们使用连接的直线函数作为基本解释方法, 并创建基于连接的直线的分类和直线函数 。 实验显示, 连接的系统分类和直径的网络的可变性能性, 显示在常规的直径可变性 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
13+阅读 · 2021年5月25日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员