Evaluating text summarization is a challenging problem, and existing evaluation metrics are far from satisfactory. In this study, we explored ChatGPT's ability to perform human-like summarization evaluation using four human evaluation methods on five datasets. We found that ChatGPT was able to complete annotations relatively smoothly using Likert scale scoring, pairwise comparison, Pyramid, and binary factuality evaluation. Additionally, it outperformed commonly used automatic evaluation metrics on some datasets. Furthermore, we discussed the impact of different prompts, compared its performance with that of human evaluation, and analyzed the generated explanations and invalid responses.


翻译:评估文本摘要是一个具有挑战性的问题,现有的评估指标远不能令人满意。在本研究中,我们使用 ChatGPT 在五个数据集上,使用四种人类评估方法探索了它进行人类式摘要评估的能力。我们发现,ChatGPT 能够相对顺利地完成使用 Likert 比例评分、成对比较、金字塔和二元事实性评估的注释。此外,在某些数据集上,它比常用的自动评估指标表现更好。此外,我们讨论了不同提示的影响,比较了它与人类评估的表现,并分析了所生成的解释和无效响应。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员