Dynamic Gaussian Splatting approaches have achieved remarkable performance for 4D scene reconstruction. However, these approaches rely on dense-frame video sequences for photorealistic reconstruction. In real-world scenarios, due to equipment constraints, sometimes only sparse frames are accessible. In this paper, we propose Sparse4DGS, the first method for sparse-frame dynamic scene reconstruction. We observe that dynamic reconstruction methods fail in both canonical and deformed spaces under sparse-frame settings, especially in areas with high texture richness. Sparse4DGS tackles this challenge by focusing on texture-rich areas. For the deformation network, we propose Texture-Aware Deformation Regularization, which introduces a texture-based depth alignment loss to regulate Gaussian deformation. For the canonical Gaussian field, we introduce Texture-Aware Canonical Optimization, which incorporates texture-based noise into the gradient descent process of canonical Gaussians. Extensive experiments show that when taking sparse frames as inputs, our method outperforms existing dynamic or few-shot techniques on NeRF-Synthetic, HyperNeRF, NeRF-DS, and our iPhone-4D datasets.
翻译:动态高斯泼溅方法在四维场景重建方面已取得显著性能。然而,这些方法依赖于密集帧视频序列以实现逼真的重建。在实际场景中,由于设备限制,有时仅能获取稀疏帧。本文提出Sparse4DGS,这是首个面向稀疏帧动态场景重建的方法。我们观察到,在稀疏帧设置下,动态重建方法在规范空间与变形空间中均存在失效,尤其在纹理丰富区域。Sparse4DGS通过聚焦纹理丰富区域应对这一挑战。针对变形网络,我们提出纹理感知变形正则化,引入基于纹理的深度对齐损失以约束高斯变形。对于规范高斯场,我们引入纹理感知规范优化,将基于纹理的噪声融入规范高斯的梯度下降过程。大量实验表明,当以稀疏帧作为输入时,本方法在NeRF-Synthetic、HyperNeRF、NeRF-DS及我们自建的iPhone-4D数据集上均优于现有动态或小样本技术。