We have developed an automated procedure for symbolic and numerical testing of formulae extracted from the NIST Digital Library of Mathematical Functions (DLMF). For the NIST Digital Repository of Mathematical Formulae, we have developed conversion tools from semantic LaTeX to the Computer Algebra System (CAS) Maple which relies on Youssef's part-of-math tagger. We convert a test data subset of 4,078 semantic LaTeX DLMF formulae %extracted from the DLMF to the native CAS representation and then apply an automated scheme for symbolic and numerical testing and verification. Our framework is implemented using Java and Maple. We describe in detail the conversion process which is required so that the CAS can correctly interpret the mathematical representation of the formulae. We describe the improvement of the effectiveness of our automated scheme through incremental enhancement (making more precise) of the mathematical semantic markup for the formulae.


翻译:我们开发了一个自动程序,用于对从NIST数学函数数字库(DLMF)中提取的公式进行象征性和数字测试。关于NIST数学公式的数字储存库,我们开发了从语义 LaTeX 转换为计算机代数系统(CAS) Maple的转换工具,该工具依赖于Youssef 的合成图格部分。我们将从DLMF中提取的4,078个语义 LaTeX DLMF 公式%的测试数据子集转换为本地CAS表示法,然后对符号和数字测试与核查应用一个自动计划。我们的框架是使用 Java 和 Maple 执行的。我们详细描述所需的转换过程,以便CAS能够正确解释公式的数学表示。我们描述了通过对公式数学语义标记的逐步增强(更加精确)来提高我们自动化方案的有效性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【2020新书】现代C++初学者指南,301页pdf
专知会员服务
163+阅读 · 2020年7月24日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
7 款实用到哭的App,只说一遍
高效率工具搜罗
84+阅读 · 2019年4月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年11月9日
VIP会员
相关VIP内容
【2020新书】现代C++初学者指南,301页pdf
专知会员服务
163+阅读 · 2020年7月24日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
7 款实用到哭的App,只说一遍
高效率工具搜罗
84+阅读 · 2019年4月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员