In order to describe the extremal behaviour of some stochastic process $X$, approaches from univariate extreme value theory are typically generalized to the spatial domain. In particular, generalized peaks-over-threshold approaches allow for the consideration of single extreme events. These can be flexibly defined as exceedances of a risk functional $r$, such as a spatial average, applied to $X$. Inference for the resulting limit process, the so-called $r$-Pareto process, requires the evaluation of $r(X)$ and thus the knowledge of the whole process $X$. In many practical applications, however, observations of $X$ are only available at scattered sites. To overcome this issue, we propose a two-step MCMC-algorithm in a Bayesian framework. In a first step, we sample from $X$ conditionally on the observations in order to evaluate which observations lead to $r$-exceedances. In a second step, we use these exceedances to sample from the posterior distribution of the parameters of the limiting $r$-Pareto process. Alternating these steps results in a full Bayesian model for the extremes of $X$. We show that, under appropriate assumptions, the probability of classifying an observation as $r$-exceedance in the first step converges to the desired probability. Furthermore, given the first step, the distribution of the Markov chain constructed in the second step converges to the posterior distribution of interest. The procedure is compared to the Bayesian version of the standard procedure in a simulation study.
翻译:为描述随机过程 $X$ 的极值行为,通常将单变量极值理论方法推广至空间域。特别地,广义超阈值方法允许考虑单个极端事件,这些事件可灵活定义为风险泛函 $r$(例如空间平均)应用于 $X$ 后的超越事件。对由此产生的极限过程(即所谓的 $r$-帕累托过程)进行推断需要计算 $r(X)$,从而需要掌握完整过程 $X$ 的信息。然而,在许多实际应用中,仅能获取 $X$ 在离散站点上的观测值。为克服此问题,我们在贝叶斯框架中提出一种两步MCMC算法:第一步,基于观测值对 $X$ 进行条件采样,以判定哪些观测会导致 $r$-超越事件;第二步,利用这些超越事件对极限 $r$-帕累托过程的参数后验分布进行采样。交替执行这两步可构建完整的 $X$ 极值贝叶斯模型。我们证明,在适当假设下,第一步中将观测值分类为 $r$-超越事件的概率收敛于目标概率;此外,在第一步给定的条件下,第二步构建的马尔可夫链分布收敛于目标后验分布。通过模拟研究将该方法与标准程序的贝叶斯版本进行比较。