Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract the GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
翻译:当前的图神经网络(GNN)模型窃取方法严重依赖于对受害者模型的查询,假设不存在严格的查询限制。然而,在实际场景中,允许的查询次数可能受到严重限制。本文展示了攻击者如何在与模型进行极有限交互的情况下提取GNN。我们的方法首先使攻击者能够在无需直接查询受害者模型的情况下获取模型主干,然后策略性地利用固定的查询限制来提取最具信息量的数据。在八个真实世界数据集上的实验证明了该攻击的有效性,即使在查询限制极为严格且存在针对模型提取的防御措施的情况下亦然。我们的发现强调了针对GNN模型提取威胁构建鲁棒防御的必要性。