Entropy stable schemes ensure that physically meaningful numerical solutions also satisfy a semi-discrete entropy inequality under appropriate boundary conditions. In this work, we describe a discretization of viscous terms in the compressible Navier-Stokes equations which enables a simple and explicit imposition of entropy stable no-slip (adiabatic and isothermal) and reflective (symmetry) wall boundary conditions for discontinuous Galerkin (DG) discretizations. Numerical results confirm the robustness and accuracy of the proposed approaches.


翻译:在这项工作中,我们描述了可压缩的Navier-Stokes方程式中的粘度术语的分解,该方程式能够简单而明确地为不连续的Galerkin(DG)分解规定恒温稳定无滑动(非亚异和异热)和反射(对称)墙边界条件。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员