Recent advancements in diffusion-based technologies have made significant strides, particularly in identity-preserved portrait generation (IPG). However, when using multiple reference images from the same ID, existing methods typically produce lower-fidelity portraits and struggle to customize face attributes precisely. To address these issues, this paper presents HiFi-Portrait, a high-fidelity method for zero-shot portrait generation. Specifically, we first introduce the face refiner and landmark generator to obtain fine-grained multi-face features and 3D-aware face landmarks. The landmarks include the reference ID and the target attributes. Then, we design HiFi-Net to fuse multi-face features and align them with landmarks, which improves ID fidelity and face control. In addition, we devise an automated pipeline to construct an ID-based dataset for training HiFi-Portrait. Extensive experimental results demonstrate that our method surpasses the SOTA approaches in face similarity and controllability. Furthermore, our method is also compatible with previous SDXL-based works.
翻译:近年来,基于扩散模型的技术取得了显著进展,尤其是在身份保持肖像生成领域。然而,当使用同一身份的多张参考图像时,现有方法通常生成保真度较低的肖像,且难以精确定制面部属性。为解决这些问题,本文提出了HiFi-Portrait,一种用于零样本肖像生成的高保真方法。具体而言,我们首先引入面部细化器和关键点生成器,以获取细粒度的多脸特征和具有三维感知的面部关键点。这些关键点包含参考身份信息和目标属性。随后,我们设计了HiFi-Net来融合多脸特征并将其与关键点对齐,从而提升身份保真度和面部控制能力。此外,我们构建了一个自动化流程来构建基于身份的数据集,用于训练HiFi-Portrait。大量实验结果表明,我们的方法在面部相似性和可控性方面超越了当前最先进的方法。同时,该方法也与先前基于SDXL的工作兼容。