In this letter, we propose a pseudo-siamese convolutional neural network (CNN) architecture that enables to solve the task of identifying corresponding patches in very-high-resolution (VHR) optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross-entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated dataset that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently co-registered 3D point clouds. The satellite images, from which the patches comprising our dataset are extracted, show a complex urban scene containing many elevated objects (i.e. buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development towards a generalized multi-sensor key-point matching procedure. Index Terms-synthetic aperture radar (SAR), optical imagery, data fusion, deep learning, convolutional neural networks (CNN), image matching, deep matching


翻译:在此信里,我们提议了一种假细菌进化神经网络(CNN)结构,能够完成在甚高分辨率(VHR)光学和合成孔径雷达(SAR)遥感图像中识别相应补丁的任务。使用两个平行网络流中的八个累进层,一个完全连接的层,将每个流中学习的特征融合在一起,一个基于二进制交叉实验环境的流失功能,如果两个补丁相匹配或不匹配,我们就能够实现一个一热指示。这个网络通过一个自动生成的数据集进行培训和测试,该数据集的基础是通过先前重建并随后共同登记的3D点云对合成合成孔和光学图像进行确定性对齐。构成我们数据集的补丁从其中提取的卫星图像显示一个复杂的城市景象,包含许多高的物体(即建筑物),从而提供了最困难的实验环境之一。取得的结果显示,该网络能够预测出一个高度准确的对应补丁,从而表明在进一步发展一个普遍的多传感器和光学关键对称程序方面的巨大潜力。指标化、相匹配的深度合成图像网络(SAR、相近光学、相图象雷达雷达、匹配网络(SAR、相映像)、指数化、相近图象雷达、相联成网络(SARVDRVDRI目的的雷达、相联的雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相距雷达、相联的网络、相距雷达、相距雷达、相距雷达、相联的网络)等)。

9
下载
关闭预览

相关内容

CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
29+阅读 · 2020年4月15日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
23+阅读 · 2019年10月18日
视频目标识别资源集合
专知
25+阅读 · 2019年6月15日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ECCV 2018 | CornerNet:目标检测算法新思路
极市平台
13+阅读 · 2018年8月11日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
29+阅读 · 2020年4月15日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
23+阅读 · 2019年10月18日
相关资讯
视频目标识别资源集合
专知
25+阅读 · 2019年6月15日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ECCV 2018 | CornerNet:目标检测算法新思路
极市平台
13+阅读 · 2018年8月11日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员