Hash grids are widely used to learn an implicit neural field for Gaussian splatting, serving either as part of the entropy model or for inter-frame prediction. However, due to the irregular and non-uniform distribution of Gaussian splats in 3D space, numerous sparse regions exist, rendering many features in the hash grid invalid. This leads to redundant storage and transmission overhead. In this work, we propose a hash grid feature pruning method that identifies and prunes invalid features based on the coordinates of the input Gaussian splats, so that only the valid features are encoded. This approach reduces the storage size of the hash grid without compromising model performance, leading to improved rate-distortion performance. Following the Common Test Conditions (CTC) defined by the standardization committee, our method achieves an average bitrate reduction of 8% compared to the baseline approach.


翻译:哈希网格被广泛用于学习高斯溅射的隐式神经场,既可作为熵模型的一部分,也可用于帧间预测。然而,由于高斯溅射在三维空间中的不规则和非均匀分布,存在大量稀疏区域,导致哈希网格中的许多特征无效。这造成了冗余的存储和传输开销。在本工作中,我们提出一种哈希网格特征剪枝方法,该方法根据输入高斯溅射的坐标识别并剪除无效特征,从而仅对有效特征进行编码。此方法在不影响模型性能的前提下减少了哈希网格的存储大小,从而提升了率失真性能。根据标准化委员会定义的通用测试条件(CTC),我们的方法相较于基线方法平均实现了8%的码率降低。

0
下载
关闭预览

相关内容

【AAAI2022】(2.5+1)D时空场景图用于视频问答
专知会员服务
24+阅读 · 2022年2月21日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月23日
Arxiv
0+阅读 · 12月23日
VIP会员
相关VIP内容
【AAAI2022】(2.5+1)D时空场景图用于视频问答
专知会员服务
24+阅读 · 2022年2月21日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员