A sequence $\pi_1,\pi_2,\dots$ of permutations is said to be "quasirandom" if the induced density of every permutation $\sigma$ in $\pi_n$ converges to $1/|\sigma|!$ as $n\to\infty$. We prove that $\pi_1,\pi_2,\dots$ is quasirandom if and only if the density of each permutation $\sigma$ in the set $$\{123,321,2143,3412,2413,3142\}$$ converges to $1/|\sigma|!$. Previously, the smallest cardinality of a set with this property, called a "quasirandom-forcing" set, was known to be between four and eight. In fact, we show that there is a single linear expression of the densities of the six permutations in this set which forces quasirandomness and show that this is best possible in the sense that there is no shorter linear expression of permutation densities with positive coefficients with this property. In the language of theoretical statistics, this expression provides a new nonparametric independence test for bivariate continuous distributions related to Spearman's $\rho$.


翻译:一个排列序列$\pi_1,\pi_2,\dots$如果对于每个排列$\sigma$在$\pi_n$中的引出密度当$n\to\infty$时无限趋近于$1/|\sigma|!$,则称其为“准随机”序列。我们证明,当且仅当集合$$\{123,321,2143,3412,2413,3142\}$$中每个排列$\sigma$的密度无限趋近于$1/|\sigma|!$时,$\pi_1,\pi_2,\dots$ 序列才是准随机的。以前,具有这种属性的最小基数的集合,即“准随机强制集”,已知在四和八之间。事实上,我们证明这有一个单一的线性表达式,使用集合中这六个排列的密度就可以强制准随机性质,并且还表明在具有正系数的排列密度的较短的线性表达式中,没有比这个更短的表达式具有此属性。在理论统计学中,该表达式提供了一个新的非参数对于Spearman's ρ相关的双变量连续分布的独立性检验。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
相关资讯
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员