We analyze message identification via Gaussian channels with noiseless feedback, which is part of the Post Shannon theory. The consideration of communication systems beyond Shannon's approach is useful to increase the efficiency of information transmission for certain applications. We consider the Gaussian channel with feedback. If the noise variance is positive, we propose a coding scheme that generates infinite common randomness between the sender and the receiver and show that any rate for identification via the Gaussian channel with noiseless feedback can be achieved. The remarkable result is that this applies to both rate definitions $\frac 1n \log M$ (as Shannon defined it for the transmission) and $\frac 1n \log\log M$ (as defined by Ahlswede and Dueck for identification). We can even show that our result holds regardless of the selected scaling for the rate.


翻译:我们用无噪音反馈分析高山频道的信息识别,这是香农邮报理论的一部分。 考虑香农方法之外的通信系统有助于提高某些应用程序的信息传输效率。 我们考虑高山频道的反馈。 如果噪音差异是肯定的, 我们提议一个编码方案, 产生发件人和接收人之间无限常见的随机性, 并显示任何通过高山频道进行无噪音反馈的识别率都可以实现。 令人瞩目的结果是, 这适用于汇率定义$\frac 1n log M$( 香农定义用于传输) 和$\frac 1n\log\log M$( 由Ahlswede和Duect定义用于识别) 。 我们甚至可以显示,无论选择的汇率缩放多少,我们的结果都会维持不变。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员