The $k$-$\mathsf{XOR}$ problem is one of the most well-studied problems in classical complexity. We study a natural quantum analogue of $k$-$\mathsf{XOR}$, the problem of computing the ground energy of a certain subclass of structured local Hamiltonians, signed sums of $k$-local Pauli operators, which we refer to as $k$-$\mathsf{XOR}$ Hamiltonians. As an exhibition of the connection between this model and classical $k$-$\mathsf{XOR}$, we extend results on refuting $k$-$\mathsf{XOR}$ instances to the Hamiltonian setting by crafting a quantum variant of the Kikuchi matrix for CSP refutation, instead capturing ground energy optimization. As our main result, we show an $n^{O(\ell)}$-time classical spectral algorithm certifying ground energy at most $\frac{1}{2} + \varepsilon$ in (1) semirandom Hamiltonian $k$-$\mathsf{XOR}$ instances or (2) sums of Gaussian-signed $k$-local Paulis both with $O(n) \cdot \left(\frac{n}{\ell}\right)^{k/2-1} \log n /\varepsilon^4$ local terms, a tradeoff known as the refutation threshold. Additionally, we give evidence this tradeoff is tight in the semirandom regime via non-commutative Sum-of-Squares lower bounds embedding classical $k$-$\mathsf{XOR}$ instances as entirely classical Hamiltonians.
翻译:$k$-$\mathsf{XOR}$ 问题是经典复杂性理论中研究最为深入的问题之一。我们研究 $k$-$\mathsf{XOR}$ 的一个自然量子类比,即计算一类结构化局域哈密顿量的基态能量,这类哈密顿量由 $k$-局域泡利算符的带符号和构成,我们称之为 $k$-$\mathsf{XOR}$ 哈密顿量。为展示该模型与经典 $k$-$\mathsf{XOR}$ 之间的关联,我们将关于反驳 $k$-$\mathsf{XOR}$ 实例的结果推广至哈密顿量框架,通过构造用于 CSP 反驳的 Kikuchi 矩阵的量子变体,转而捕捉基态能量优化问题。作为主要结果,我们提出一个 $n^{O(\ell)}$ 时间的经典谱算法,能够在以下两种情况下证明基态能量至多为 $\frac{1}{2} + \varepsilon$:(1) 半随机哈密顿量 $k$-$\mathsf{XOR}$ 实例,或 (2) 高斯符号 $k$-局域泡利算符之和,两者均具有 $O(n) \cdot \left(\frac{n}{\ell}\right)^{k/2-1} \log n /\varepsilon^4$ 个局域项,这一权衡关系被称为反驳阈值。此外,我们通过非交换平方和下界将经典 $k$-$\mathsf{XOR}$ 实例嵌入为完全经典的哈密顿量,为半随机区域中该权衡关系的紧性提供了证据。