We develop a class of optimal tests for a structural break occurring at an unknown date in infinite and growing-order time series regression models, such as AR($\infty$), linear regression with increasingly many covariates, and nonparametric regression. Under an auxiliary i.i.d. Gaussian error assumption, we derive an average power optimal test, establishing a growing-dimensional analog of the exponential tests of Andrews and Ploberger (1994) to handle identification failure under the null hypothesis of no break. Relaxing the i.i.d. Gaussian assumption to a more general dependence structure, we establish a functional central limit theorem for the underlying stochastic processes, which features an extra high-order serial dependence term due to the growing dimension. We robustify our test both against this term and finite sample bias and illustrate its excellent performance and practical relevance in a Monte Carlo study and a real data empirical example.
翻译:本文针对无限阶与增长阶时间序列回归模型(如AR($\infty$)、协变量数量递增的线性回归以及非参数回归)中发生在未知时点的结构突变,构建了一类最优检验方法。在辅助性的独立同分布高斯误差假设下,我们推导出平均功效最优检验,建立了Andrews与Ploberger(1994)指数检验的增长维模拟,以处理无突变原假设下的识别失效问题。通过将独立同分布高斯假设放宽至更一般的相依结构,我们建立了基础随机过程泛函中心极限定理,该定理包含一个由维度增长产生的高阶序列相依项。我们针对此项及有限样本偏差对检验进行了稳健化处理,并通过蒙特卡洛模拟与实证数据案例展示了该方法优异的性能与实际应用价值。