In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.


翻译:发育中的胎儿大脑自动分解是研究和临床背景下产前神经发育定量分析的一个重要步骤。然而,脑结构人工分解耗费时间,容易出错和观察器之间的变异性。因此,我们于2021年组织了胎儿问题批注(Feta)挑战,以鼓励在国际一级开发自动分解算法。挑战使用了Feta 数据集,即胎儿脑MRI重建的开放数据集,分为七个不同的组织(脑神经内脊髓液、灰质物质、白物质、心胸、骨髓、脑灰质、深灰质)。20个国际小组参与了这一挑战,提交了总共21项评估算法。在本文件中,我们从技术和临床角度对结果进行了详细分析。所有参与者都依靠深层次学习方法,主要是UNet,网络结构结构中存在一些变异性、灰质物质、白质、脑骨质、脑骨质、脑质、脑质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质等。在目前学习过程中,已经应用的医学团队、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质、骨质分析中,都、骨质、骨质、骨质、骨质、骨质、骨质分析、骨质分析。做了。做了。进行了分析、骨质、骨质、骨质、骨质分析。做了分析。。做了。做了。做了。做了,都、骨质分析、直、骨质分析、骨质分析、骨质分析、骨质分析、骨质分析、直、骨质分析、骨质分析、骨质分析、骨质分析、直、骨质分析、骨、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直、直

2
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月9日
A Survey on Data Augmentation for Text Classification
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员