The stochastic FitzHugh-Nagumo (FHN) model is a two-dimensional nonlinear stochastic differential equation with additive degenerate noise, whose first component, the only one observed, describes the membrane voltage evolution of a single neuron. Due to its low-dimensionality, its analytical and numerical tractability and its neuronal interpretation, it has been used as a case study to test the performance of different statistical methods in estimating the underlying model parameters. Existing methods, however, often require complete observations, non-degeneracy of the noise or a complex architecture (e.g., to estimate the transition density of the process, "recovering" the unobserved second component) and they may not (satisfactorily) estimate all model parameters simultaneously. Moreover, these studies lack real data applications for the stochastic FHN model. The proposed method tackles all challenges (non-globally Lipschitz drift, non-explicit solution, lack of available transition density, degeneracy of the noise and partial observations). It is an intuitive and easy-to-implement sequential Monte Carlo approximate Bayesian computation algorithm, which relies on a recent computationally efficient and structure-preserving numerical splitting scheme for synthetic data generation and on summary statistics exploiting the structural properties of the process. All model parameters are successfully estimated from simulated data and, more remarkably, real action potential data of rats. The presented novel real-data fit may broaden the scope and credibility of this classic and widely used neuronal model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员