We introduce Eff-GRot, an approach for efficient and generalizable rotation estimation from RGB images. Given a query image and a set of reference images with known orientations, our method directly predicts the object's rotation in a single forward pass, without requiring object- or category-specific training. At the core of our framework is a transformer that performs a comparison in the latent space, jointly processing rotation-aware representations from multiple references alongside a query. This design enables a favorable balance between accuracy and computational efficiency while remaining simple, scalable, and fully end-to-end. Experimental results show that Eff-GRot offers a promising direction toward more efficient rotation estimation, particularly in latency-sensitive applications.


翻译:本文提出Eff-GRot,一种从RGB图像进行高效且可泛化的旋转估计方法。给定一张查询图像和一组已知朝向的参考图像,本方法无需针对特定物体或类别进行训练,即可通过单次前向传播直接预测物体的旋转。我们框架的核心是一个在隐空间进行比较的Transformer,它能够联合处理来自多张参考图像的旋转感知表征与查询图像。该设计在保持结构简洁、可扩展且完全端到端的同时,实现了精度与计算效率之间的良好平衡。实验结果表明,Eff-GRot为更高效的旋转估计(尤其是在对延迟敏感的应用中)提供了一个有前景的研究方向。

0
下载
关闭预览

相关内容

UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员