Risk-limiting audits (RLAs) are rigorous statistical procedures meant to detect invalid election results. RLAs examine paper ballots cast during the election to statistically assess the possibility of a disagreement between the winner determined by the ballots and the winner reported by tabulation. The most ballot efficient approaches proceed by "ballot comparison." However, ballot comparison requires an untrusted declaration of the contents of each cast ballot, rather than a simple tabulation of vote totals. This "cast-vote record table" (CVR) is then spot-checked against ballots for consistency. In many practical settings, the cost of generating a suitable CVR dominates the cost of conducting the audit, preventing widespread adoption of these sample-efficient techniques. We introduce a new RLA procedure: an "adaptive ballot comparison" audit. In this audit, a global CVR is never produced; instead, a three-stage procedure is iterated: 1) a batch is selected, 2) a CVR is produced for that batch, and 3) a ballot within the batch is sampled, inspected by auditors, and compared with the CVR. We prove that such an audit can achieve risk commensurate with standard comparison audits while generating a fraction of the CVR. We present three main contributions: 1) a formal adversarial model for RLAs; 2) definition and analysis of an adaptive audit procedure with rigorous risk limits and an associated correctness analysis accounting for the incidental errors arising in typical audits; and 3) an analysis of practical efficiency. This method can be organized in rounds (as is typical for comparison audits) where sampled CVRs are produced in parallel. Using data from Florida's 2020 presidential election with 5% risk and 1% margin, only 22% of the CVR is generated; at 10% margin, only 2% is generated.


翻译:风险限制审计(RLAs)是用于检测无效选举结果的严格统计程序。在选举期间,RLAs检查在选举期间投出的纸面选票,以便从统计角度评估选票确定的获胜者与以制表方式报告的获胜者之间出现分歧的可能性。最高效的投票方法是“选票比较 ” 。然而,对选票进行比较需要不经信任地公布每张选票的内容,而不是简单的制表制选票总数。这个“轮投票记录表”(CVR)随后对选票进行抽查,以确保一致性。在许多实际环境中,产生合适的CVR的典型成本主导着进行审计的成本,防止广泛采用这些抽样效率技术。我们采用了新的RLA程序:“适应性投票比较”审计。在本次审计中,全球CVR从未产生;相反,一个三阶段程序是循环更新:1个批的样本,2个与该批相关的CVR的批数,2个CVR的批数的比值为5个选票,由审计员进行抽样检查,并与CVR的比值比较。我们证明在进行这样的审计时,一个符合审计的正确比率分析。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2021年7月20日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员