Whole Slide Images (WSIs) are typically analyzed using multiple instance learning (MIL) methods. However, the scale and heterogeneity of WSIs generate highly redundant and dispersed information, making it difficult to identify and integrate discriminative signals. Existing MIL methods either fail to discard uninformative cues effectively or have limited ability to consolidate relevant features from multiple patches, which restricts their performance on large and heterogeneous WSIs. To address this issue, we propose DeltaMIL, a novel MIL framework that explicitly selects semantically relevant regions and integrates the discriminative information from WSIs. Our method leverages the gated delta rule to efficiently filter and integrate information through a block combining forgetting and memory mechanisms. The delta mechanism dynamically updates the memory by removing old values and inserting new ones according to their correlation with the current patch. The gating mechanism further enables rapid forgetting of irrelevant signals. Additionally, DeltaMIL integrates a complementary local pattern mixing mechanism to retain fine-grained pathological locality. Our design enhances the extraction of meaningful cues and suppresses redundant or noisy information, which improves the model's robustness and discriminative power. Experiments demonstrate that DeltaMIL achieves state-of-the-art performance. Specifically, for survival prediction, DeltaMIL improves performance by 3.69\% using ResNet-50 features and 2.36\% using UNI features. For slide-level classification, it increases accuracy by 3.09\% with ResNet-50 features and 3.75\% with UNI features. These results demonstrate the strong and consistent performance of DeltaMIL across diverse WSI tasks.
翻译:全切片图像通常采用多示例学习方法进行分析。然而,全切片图像的尺度与异质性会产生高度冗余且分散的信息,使得判别性信号的识别与整合变得困难。现有多示例学习方法要么无法有效丢弃无信息线索,要么整合多区域相关特征的能力有限,这限制了其在大规模异质性全切片图像上的性能。为解决该问题,我们提出DeltaMIL——一种显式选择语义相关区域并整合全切片图像判别性信息的新型多示例学习框架。本方法利用门控δ规则,通过结合遗忘与记忆机制的模块实现高效信息过滤与整合。δ机制根据当前图像块与记忆内容的相关性动态更新记忆状态,通过移除旧值并插入新值实现记忆更新。门控机制进一步实现了对无关信号的快速遗忘。此外,DeltaMIL整合了互补的局部模式混合机制以保留细粒度病理学局部特征。我们的设计增强了对有意义线索的提取能力,同时抑制了冗余或噪声信息,从而提升了模型的鲁棒性与判别力。实验表明DeltaMIL取得了最先进的性能表现。具体而言,在生存预测任务中,DeltaMIL使用ResNet-50特征时将性能提升3.69%,使用UNI特征时提升2.36%;在切片级分类任务中,使用ResNet-50特征时准确率提升3.09%,使用UNI特征时提升3.75%。这些结果证明了DeltaMIL在不同全切片图像分析任务中具有强大且稳定的性能。