Riesz regression has garnered attention as a tool in debiased machine learning for causal and structural parameter estimation (Chernozhukov et al., 2021). This study shows that Riesz regression is closely related to direct density-ratio estimation (DRE) in important cases, including average treat- ment effect (ATE) estimation. Specifically, the idea and objective in Riesz regression coincide with the one in least-squares importance fitting (LSIF, Kanamori et al., 2009) in direct density-ratio estimation. While Riesz regression is general in the sense that it can be applied to Riesz representer estimation in a wide class of problems, the equivalence with DRE allows us to directly import exist- ing results in specific cases, including convergence-rate analyses, the selection of loss functions via Bregman-divergence minimization, and regularization techniques for flexible models, such as neural networks. Conversely, insights about the Riesz representer in debiased machine learning broaden the applications of direct density-ratio estimation methods. This paper consolidates our prior results in Kato (2025a) and Kato (2025b).
翻译:Riesz回归作为一种用于因果与结构参数估计的去偏机器学习工具,已受到广泛关注(Chernozhukov等人,2021)。本研究证明,在包括平均处理效应(ATE)估计在内的多个重要场景中,Riesz回归与直接密度比估计(DRE)密切相关。具体而言,Riesz回归的核心思想与目标函数,与直接密度比估计中的最小二乘重要性拟合(LSIF,Kanamori等人,2009)方法相一致。尽管Riesz回归具有普适性,可应用于广泛问题中的Riesz表示子估计,但其与DRE的等价性使我们能够在特定情况下直接引入现有成果,包括收敛速率分析、通过Bregman散度最小化选择损失函数,以及针对神经网络等灵活模型的正则化技术。反之,关于去偏机器学习中Riesz表示子的见解也拓宽了直接密度比估计方法的应用范围。本文整合了我们在Kato(2025a)和Kato(2025b)中的前期研究成果。