We introduce and analyze a mesh-free two-level hybrid Tucker tensor format for approximating multivariate functions, which combines the product Chebyshev interpolation with the alternating least-squares (ALS) based Tucker decomposition of the tensor of Chebyshev coefficients. This construction allows to avoid the expensive rank-structured grid-based approximation of function-related tensors on large spatial grids, while benefiting from the Tucker decomposition of the rather small core tensor of Chebyshev coefficients. Thus, we can compute the nearly optimal Tucker decomposition of the 3D function with controllable accuracy $\varepsilon >0$ without discretizing the function on the full grid in the domain, but only using its values at small set of Chebyshev nodes. Finally, we can represent the function in the algebraic Tucker format with optimal $\varepsilon$-rank on an arbitrarily large 3D tensor grid in the computational domain by discretizing the Chebyshev polynomials on that grid. The rank parameters of the Tucker-ALS decomposition of the coefficient tensor can be much smaller than the polynomial degrees of the initial Chebyshev interpolant obtained via a function independent polynomial basis set. It is shown that our techniques can be gainfully applied to the long-range part of the singular electrostatic potential of multi-particle systems approximated in the range-separated tensor format. We provide error and complexity estimates and demonstrate the computational efficiency of the proposed techniques on challenging examples, including the multi-particle electrostatic potential for large bio-molecular systems and lattice-type compounds.
翻译:本文提出并分析了一种用于逼近多元函数的无网格双层混合塔克张量格式,该格式将乘积型切比雪夫插值与基于交替最小二乘(ALS)的切比雪夫系数张量塔克分解相结合。该构造方法避免了在大型空间网格上对函数相关张量进行昂贵的基于网格的秩结构逼近,同时受益于对规模较小的切比雪夫系数核心张量进行塔克分解。因此,我们能够在无需在定义域全网格上离散化函数的情况下,仅使用函数在少量切比雪夫节点处的取值,以可控精度 $\varepsilon >0$ 计算三维函数的近似最优塔克分解。最终,通过在计算域内任意大的三维张量网格上离散切比雪夫多项式,我们可以将函数表示为具有最优 $\varepsilon$-秩的代数塔克格式。系数张量塔克-ALS分解的秩参数可远小于通过函数无关多项式基组获得的初始切比雪夫插值子的多项式次数。研究表明,我们的技术可有效应用于以范围分离张量格式逼近的多粒子体系奇异静电势的长程部分。我们给出了误差与复杂度估计,并通过具有挑战性的算例(包括大型生物分子体系及晶格型化合物的多粒子静电势)验证了所提方法的计算效率。