This article presents a "Hybrid Self-Attention NEAT" method to improve the original NeuroEvolution of Augmenting Topologies (NEAT) algorithm in high-dimensional inputs. Although the NEAT algorithm has shown a significant result in different challenging tasks, as input representations are high dimensional, it cannot create a well-tuned network. Our study addresses this limitation by using self-attention as an indirect encoding method to select the most important parts of the input. In addition, we improve its overall performance with the help of a hybrid method to evolve the final network weights. The main conclusion is that Hybrid Self- Attention NEAT can eliminate the restriction of the original NEAT. The results indicate that in comparison with evolutionary algorithms, our model can get comparable scores in Atari games with raw pixels input with a much lower number of parameters.


翻译:本文介绍了一种“ 高度自我注意 NEAT ” 方法, 用于改进高维投入中原有的强化地形学神经进化算法( NEAT ) 。 虽然 NEAT 算法显示,由于输入表示具有高度的高度, 已经取得了不同挑战性任务的重大结果, 但是它无法创建出一个协调良好的网络。 我们的研究通过使用自我注意作为间接编码方法来选择输入的最重要部分来解决这一局限性。 此外, 在混合方法的帮助下, 我们改进了总体性能, 以发展最终网络重量。 主要的结论是, 混合自我注意 NEAT 能够消除原始 NEAT 的限制 。 结果显示, 与进化算法相比, 我们的模型可以在阿塔里游戏中获得相似的分数, 其原始像素输入的分数要低得多。

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员