We propose an $O(\log n)$-approximation algorithm for the bipartiteness ratio of undirected graphs introduced by Trevisan (SIAM Journal on Computing, vol. 41, no. 6, 2012), where $n$ is the number of vertices. Our approach extends the cut-matching game framework for sparsest cut to the bipartiteness ratio, and requires only $\mathop{\mathrm{polylog}} n$ many single-commodity undirected maximum flow computations. Therefore, with the current fastest undirected max-flow algorithms, it runs in almost linear time. Along the way, we introduce the concept of well-linkedness for skew-symmetric graphs and prove a novel characterization of bipartiteness ratio in terms of well-linkedness in an auxiliary skew-symmetric graph, which may be of independent interest. As an application, we devise an $\tilde{O}(mn)$-time algorithm for the minimum uncut problem: given a graph whose optimal cut leaves an $\eta$ fraction of edges uncut, we find a cut that leaves only an $O(\log n \log(1/\eta)) \cdot \eta$ fraction of edges uncut, where $m$ is the number of edges. Finally, we propose a directed analogue of the bipartiteness ratio, and we give a polynomial-time algorithm that achieves an $O(\log n)$ approximation for this measure via a directed Leighton--Rao-style embedding. We also propose an algorithm for the minimum directed uncut problem with a guarantee similar to that for the minimum uncut problem.
翻译:我们针对Trevisan(《SIAM计算期刊》,第41卷第6期,2012年)提出的无向图二分性比率,提出了一种$O(\\log n)$近似算法,其中$n$为顶点数。我们的方法将稀疏割的割匹配博弈框架扩展至二分性比率,仅需$\\mathop{\mathrm{polylog}} n$次单商品无向最大流计算。因此,结合当前最快的无向最大流算法,该算法可在近似线性时间内运行。在此过程中,我们引入了斜对称图的良连接性概念,并基于辅助斜对称图中的良连接性证明了二分性比率的新颖特征刻画,这一结果可能具有独立的研究价值。作为应用,我们设计了一种$\\tilde{O}(mn)$时间算法用于最小非割问题:给定一个图,其最优割会留下$\\eta$比例的边未被割断,我们找到一个割,仅留下$O(\\log n \\log(1/\\eta)) \\cdot \\eta$比例的边未被割断,其中$m$为边数。最后,我们提出了二分性比率的有向类比,并给出一种多项式时间算法,通过有向Leighton-Rao风格嵌入实现对该度量的$O(\\log n)$近似。我们还针对最小有向非割问题提出了一种算法,其保证条件与最小非割问题类似。