Staggered rollout cluster randomized experiments (SR-CREs) involve sequential treatment adoption across clusters, requiring analysis methods that address a general class of dynamic causal effects, anticipation, and non-ignorable cluster-period sizes. Without imposing any outcome modeling assumptions, we study regression estimators using individual data, cluster-period averages, and scaled cluster-period totals, with and without covariate adjustment from a design-based perspective. We establish consistency and asymptotic normality of each estimator under a randomization-based framework and prove that the associated variance estimators are asymptotically conservative in the L\"{o}wner ordering. Furthermore, we conduct a unified efficiency comparison of the estimators and provide recommendations. We highlight the efficiency advantage of using estimators based on scaled cluster-period totals with covariate adjustment over their counterparts using individual-level data and cluster-period averages. Our results rigorously justify linear regression estimators as model-assisted methods to address an entire class of dynamic causal effects in SR-CREs.
翻译:交错实施整群随机试验涉及跨群组的序贯处理分配,其分析方法需处理一类广义的动态因果效应、预期效应以及不可忽略的群组-时期规模问题。在不施加任何结果建模假设的前提下,我们从设计基的视角研究了基于个体数据、群组-时期均值及标准化群组-时期总量的回归估计量(含协变量调整与不含调整版本)。我们在随机化框架下建立了各估计量的一致性与渐近正态性,并证明相关方差估计量在Löwner序意义下具有渐近保守性。此外,我们对各估计量进行了统一的效率比较并给出实用建议。我们特别指出:采用基于标准化群组-时期总量且经协变量调整的估计量,相较于基于个体层面数据与群组-时期均值的对应估计量具有效率优势。本研究结果严格论证了线性回归估计量可作为模型辅助方法,用于处理交错实施整群随机试验中整类动态因果效应问题。