Accurate assessment of bowel cleanliness is essential for effective colonoscopy procedures. The Boston Bowel Preparation Scale (BBPS) offers a standardized scoring system but suffers from subjectivity and inter-observer variability when performed manually. In this paper, to support robust training and evaluation, we construct a high-quality colonoscopy dataset comprising 2,240 images from 517 subjects, annotated with expert-agreed BBPS scores. We propose a novel automated BBPS scoring framework that leverages the CLIP model with adapter-based transfer learning and a dedicated fecal-feature extraction branch. Our method fuses global visual features with stool-related textual priors to improve the accuracy of bowel cleanliness evaluation without requiring explicit segmentation. Extensive experiments on both our dataset and the public NERTHU dataset demonstrate the superiority of our approach over existing baselines, highlighting its potential for clinical deployment in computer-aided colonoscopy analysis.
翻译:准确评估肠道清洁度对于有效的结肠镜检查至关重要。波士顿肠道准备量表(BBPS)提供了一个标准化的评分系统,但在人工执行时存在主观性和观察者间差异。本文为支持稳健的训练与评估,构建了一个高质量的结肠镜数据集,包含来自517名受试者的2,240张图像,并由专家协商一致的BBPS评分进行标注。我们提出了一种新颖的自动BBPS评分框架,该框架利用CLIP模型,结合基于适配器的迁移学习和专用的粪便特征提取分支。我们的方法将全局视觉特征与粪便相关的文本先验信息相融合,以提高肠道清洁度评估的准确性,且无需显式分割。在我们构建的数据集及公开的NERTHU数据集上进行的大量实验表明,该方法优于现有基线,凸显了其在计算机辅助结肠镜分析中临床部署的潜力。