Accurate segmentation of ischemic stroke lesions from diffusion magnetic resonance imaging (MRI) is essential for clinical decision-making and outcome assessment. Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) scans provide complementary information on acute and sub-acute ischemic changes; however, automated lesion delineation remains challenging due to variability in lesion appearance. In this work, we study ischemic stroke lesion segmentation using multimodal diffusion MRI from the ISLES 2022 dataset. Several state-of-the-art convolutional and transformer-based architectures, including U-Net variants, Swin-UNet, and TransUNet, are benchmarked. Based on performance, a dual-encoder TransUNet architecture is proposed to learn modality-specific representations from DWI and ADC inputs. To incorporate spatial context, adjacent slice information is integrated using a three-slice input configuration. All models are trained under a unified framework and evaluated using the Dice Similarity Coefficient (DSC). Results show that transformer-based models outperform convolutional baselines, and the proposed dual-encoder TransUNet achieves the best performance, reaching a Dice score of 85.4% on the test set. The proposed framework offers a robust solution for automated ischemic stroke lesion segmentation from diffusion MRI.
翻译:从扩散磁共振成像(MRI)中精确分割缺血性脑卒中病灶对于临床决策和预后评估至关重要。扩散加权成像(DWI)和表观扩散系数(ADC)扫描提供了关于急性和亚急性缺血性变化的互补信息;然而,由于病灶外观的变异性,自动病灶勾画仍然具有挑战性。本研究利用ISLES 2022数据集中的多模态扩散MRI,对缺血性脑卒中病灶分割进行了研究。我们对多种最先进的基于卷积和Transformer的架构进行了基准测试,包括U-Net变体、Swin-UNet和TransUNet。基于性能评估,我们提出了一种双编码器TransUNet架构,用于从DWI和ADC输入中学习模态特定的表征。为了融入空间上下文信息,我们采用三切片输入配置整合了相邻切片信息。所有模型均在统一框架下进行训练,并使用Dice相似系数(DSC)进行评估。结果表明,基于Transformer的模型优于卷积基线模型,所提出的双编码器TransUNet取得了最佳性能,在测试集上的Dice分数达到了85.4%。该框架为基于扩散MRI的自动缺血性脑卒中病灶分割提供了一个稳健的解决方案。