Recent advances in generative modeling -- particularly diffusion models and flow matching -- have achieved remarkable success in synthesizing discrete data such as images and videos. However, adapting these models to physical applications remains challenging, as the quantities of interest are continuous functions governed by complex physical laws. Here, we introduce $\textbf{FunDiff}$, a novel framework for generative modeling in function spaces. FunDiff combines a latent diffusion process with a function autoencoder architecture to handle input functions with varying discretizations, generate continuous functions evaluable at arbitrary locations, and seamlessly incorporate physical priors. These priors are enforced through architectural constraints or physics-informed loss functions, ensuring that generated samples satisfy fundamental physical laws. We theoretically establish minimax optimality guarantees for density estimation in function spaces, showing that diffusion-based estimators achieve optimal convergence rates under suitable regularity conditions. We demonstrate the practical effectiveness of FunDiff across diverse applications in fluid dynamics and solid mechanics. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy and low-resolution data. Code and datasets are publicly available at https://github.com/sifanexisted/fundiff.
翻译:生成建模领域的最新进展——特别是扩散模型和流匹配技术——在合成图像和视频等离散数据方面取得了显著成功。然而,将这些模型应用于物理领域仍然面临挑战,因为所关注的量是由复杂物理定律支配的连续函数。本文提出 $\textbf{FunDiff}$,一种用于函数空间生成建模的新框架。FunDiff 将潜在扩散过程与函数自编码器架构相结合,能够处理具有不同离散化程度的输入函数,生成可在任意位置评估的连续函数,并无缝融入物理先验知识。这些先验知识通过架构约束或物理信息损失函数进行强化,确保生成的样本满足基本物理定律。我们从理论上建立了函数空间密度估计的极小极大最优性保证,表明在适当的正则性条件下,基于扩散的估计器能够达到最优收敛速率。我们在流体动力学和固体力学等多个应用中验证了 FunDiff 的实际有效性。实验结果表明,我们的方法能够生成与目标分布高度吻合且物理一致的样本,并对噪声和低分辨率数据表现出鲁棒性。代码和数据集已在 https://github.com/sifanexisted/fundiff 公开提供。