Recent studies focus on formulating the traffic forecasting as a spatio-temporal graph modeling problem. They typically construct a static spatial graph at each time step and then connect each node with itself between adjacent time steps to construct the spatio-temporal graph. In such a graph, the correlations between different nodes at different time steps are not explicitly reflected, which may restrict the learning ability of graph neural networks. Meanwhile, those models ignore the dynamic spatio-temporal correlations among nodes as they use the same adjacency matrix at different time steps. To overcome these limitations, we propose a Spatio-Temporal Joint Graph Convolutional Networks (STJGCN) for traffic forecasting over several time steps ahead on a road network. Specifically, we construct both pre-defined and adaptive spatio-temporal joint graphs (STJGs) between any two time steps, which represent comprehensive and dynamic spatio-temporal correlations. We further design dilated causal spatio-temporal joint graph convolution layers on STJG to capture the spatio-temporal dependencies from distinct perspectives with multiple ranges. A multi-range attention mechanism is proposed to aggregate the information of different ranges. Experiments on four public traffic datasets demonstrate that STJGCN is computationally efficient and outperforms 11 state-of-the-art baseline methods.


翻译:最近的研究侧重于将交通流量预测设计成一个时空图模型问题。 它们通常在每步每步建一个静态空间图, 然后将相邻时间步骤之间的每个节点连接起来, 以构建时空图。 在这样的图表中, 不同时间步骤的不同节点之间的关联没有被明确反映, 这可能会限制图形神经网络的学习能力。 同时, 这些模型忽略了节点之间的动态空间时空相关关系, 因为它们在不同的时间步骤中使用了相同的相近矩阵。 为了克服这些限制, 我们建议在STJG上建立一个Spatio- 时空联合图表组合网络(STJGCN), 用于在道路网络上前几个时间步骤的流量预测。 具体地说, 我们在任何两个时间步骤之间构建了预先定义和适应的时空联合图(STJGS), 这代表了全面而动态的时空- 时空相互关系。 我们进一步设计了在STJG上调热因时空联合阵列的阵列阵列阵列组合阵列组合阵列图层, 以及从拟议的多时空空间阵列矩阵模型中展示了从不同方向的多角度的多度矩阵分析。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员