The method of Chernoff approximation is a powerful and flexible tool of functional analysis that in many cases allows expressing exp(tL) in terms of variable coefficients of linear differential operator L. In this paper we prove a theorem that allows us to apply this method to find the resolvent of operator L. We demonstrate this on the second order differential operator. As a corollary, we obtain a new representation of the solution of an inhomogeneous second order linear ordinary differential equation in terms of functions that are the coefficients of this equation playing the role of parameters for the problem.


翻译:Chernoff近似法是功能分析的有力和灵活工具,在许多情况下,它允许用线性差分运商的可变系数表示表达表达(tL)值。 在本文件中,我们证明我们有一个理论,使我们能够运用这一方法找到操作商L.的坚定度。我们在第二顺序差差分运商上展示了这一点。作为必然结果,我们获得了一种新形式,从作为该等值的系数的函数中,从作为问题参数作用的函数的不对等的第二顺序普通线性差分方程的解决方法中得到了一种新的表述。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员