Complex numbers have long been favoured for digital signal processing, yet complex representations rarely appear in deep learning architectures. RNNs, widely used to process time series and sequence information, could greatly benefit from complex representations. We present a novel complex gate recurrent cell. When used together with norm-preserving state transition matrices, our complex gated RNN exhibits excellent stability and convergence properties. We demonstrate competitive performance of our complex gated RNN on the synthetic memory and adding task, as well as on the real-world task of human motion prediction.


翻译:长期以来,数字信号处理一直偏好复杂数字,但深层学习结构中很少出现复杂的表现。 广泛用于处理时间序列和序列信息的 RNNs 可以从复杂的表述中大有裨益。 我们展示了一个新的复杂大门重复的单元格。 当与规范保护国家过渡矩阵一起使用时,我们复杂的门锁RNN具有极好的稳定性和趋同性。 我们在合成记忆和添加任务以及人类运动预测的实际任务上展示了我们复杂的门锁RNN的竞争性表现。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Top
微信扫码咨询专知VIP会员