Tools and methods for automatic image segmentation are rapidly developing, each with its own strengths and weaknesses. While these methods are designed to be as general as possible, there are no guarantees for their performance on new data. The choice between methods is usually based on benchmark performance whereas the data in the benchmark can be significantly different than that of the user. We introduce a novel Deep Learning method which, given an image and a proposed corresponding segmentation, estimates the Intersection over Union measure (IoU) with respect to the unknown ground truth. We refer to this method as a Quality Assurance Network - QANet. The QANet is designed to give the user an estimate of the segmentation quality on the users own, private, data without the need for human inspection or labelling. It is based on the RibCage Network architecture, originally proposed as a discriminator in an adversarial network framework. Promising IoU prediction results are demonstrated based on the Cell Segmentation Benchmark.


翻译:自动图像分解工具和方法正在迅速发展,每个工具和方法都有各自的强项和弱点。这些方法的设计尽量笼统,但无法保证其在新数据上的表现。两种方法的选择通常以基准性能为基础,而基准中的数据则与用户的数据大不相同。我们采用了一种新的深层次学习方法,根据图像和拟议的相应分解,估计了在未知地面真相方面对联盟措施的跨部分(IoU)值。我们将此方法称为质量保证网络 - QANet。QANet旨在向用户提供用户对用户自己、私人和数据分解质量的估计,而无需人进行检查或贴标签。我们采用RibCage网络结构,最初是在对抗网络框架中作为歧视方提出的。根据细胞分解基准显示有希望的IoU预测结果。

1
下载
关闭预览

相关内容

最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
VIP会员
Top
微信扫码咨询专知VIP会员