Given $M \geq 2$ distributions defined on a general measurable space, we introduce a nonparametric (kernel) measure of multi-sample dissimilarity (KMD) -- a parameter that quantifies the difference between the $M$ distributions. The population KMD, which takes values between 0 and 1, is 0 if and only if all the $M$ distributions are the same, and 1 if and only if all the distributions are mutually singular. Moreover, KMD possesses many properties commonly associated with $f$-divergences such as the data processing inequality and invariance under bijective transformations. The sample estimate of KMD, based on independent observations from the $M$ distributions, can be computed in near linear time (up to logarithmic factors) using $k$-nearest neighbor graphs (for $k \ge 1$ fixed). We develop an easily implementable test for the equality of $M$ distributions based on the sample KMD that is consistent against all alternatives where at least two distributions are not equal. We prove central limit theorems for the sample KMD, and provide a complete characterization of the asymptotic power of the test, as well as its detection threshold. The usefulness of our measure is demonstrated via real and synthetic data examples; our method is also implemented in an R package.


翻译:鉴于在一般可测量空间上定义的$M \ geq 2美元分布值,我们引入了多种抽样差异的非参数(内核)度量(KMD) -- -- 这个参数可以量化美元分布之间的差数。人口KMD的数值在0到1之间,只有在所有美元分布均值相同的情况下才为0,只有所有美元分布均值相同时才为0美元,只有所有分布均值均值时才为1美元。此外,KMD拥有许多通常与美元差异值相关的属性(内核),例如数据处理不平等和双向转换中的变异。根据对美元分布的独立观察得出的KMD的抽样估计,可以在近线性时间(最高为对数值)计算。KMD的抽样估计可以使用美元最接近的相邻图表($k \ ge 1 固定 ) 。我们根据样本KMD 开发了一个易于执行的美元分布均值的测试标准,该测试与至少两种分布不均值的所有替代方法一致。我们证明,通过样本检测的中央限值和合成数据作为测试模型测试标准,作为我们测算的模型的测试标准。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月20日
Arxiv
0+阅读 · 2022年11月18日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员