Automating arrhythmia detection from ECG requires a robust and trusted system that retains high accuracy under electrical disturbances. Many machine learning approaches have reached human-level performance in classifying arrhythmia from ECGs. However, these architectures are vulnerable to adversarial attacks, which can misclassify ECG signals by decreasing the model's accuracy. Adversarial attacks are small crafted perturbations injected in the original data which manifest the out-of-distribution shifts in signal to misclassify the correct class. Thus, security concerns arise for false hospitalization and insurance fraud abusing these perturbations. To mitigate this problem, we introduce the first novel Conditional Generative Adversarial Network (GAN), robust against adversarial attacked ECG signals and retaining high accuracy. Our architecture integrates a new class-weighted objective function for adversarial perturbation identification and new blocks for discerning and combining out-of-distribution shifts in signals in the learning process for accurately classifying various arrhythmia types. Furthermore, we benchmark our architecture on six different white and black-box attacks and compare them with other recently proposed arrhythmia classification models on two publicly available ECG arrhythmia datasets. The experiment confirms that our model is more robust against such adversarial attacks for classifying arrhythmia with high accuracy.


翻译:从ECG中自动检测心律失常需要一种强大和可信赖的系统,在电动干扰下保持高度精确性能。许多机器学习方法在对ECG中的心律失常进行分类方面达到了人性水平。然而,这些结构很容易受到对抗性攻击的伤害,这种攻击会通过降低模型的准确性而误判ECG信号。反向攻击是植入原始数据中的小规模人工扰动,这些数据显示分配外的信号变化,以错误地分类正确等级。因此,虚假住院和保险欺诈滥用这些扰动行为引起安全关切。为了缓解这一问题,我们引入了第一个新型的CONTimational General Adversarial 网络(GAN),对攻击ECG信号的对抗性对抗性对抗性攻击性攻击力很强,并保持了很高的准确性。我们的建筑结构结合了一种新的等级加权目标功能,用于辨别和合并各种心律不正反调类型的学习过程中的信号的分差变化。此外,我们用六种不同的白和黑框攻击来测量我们的建筑建筑结构,并将这种结构与最近提出的高额的Chypralalalalimabal laima 的公制数据分类比作比较,以其他的公制高的公制数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员