We propose MedBayes-Lite, a lightweight Bayesian enhancement for transformer-based clinical language models designed to produce reliable, uncertainty-aware predictions. Although transformers show strong potential for clinical decision support, they remain prone to overconfidence, especially in ambiguous medical cases where calibrated uncertainty is critical. MedBayes-Lite embeds uncertainty quantification directly into existing transformer pipelines without any retraining or architectural rewiring, adding no new trainable layers and keeping parameter overhead under 3 percent. The framework integrates three components: (i) Bayesian Embedding Calibration using Monte Carlo dropout for epistemic uncertainty, (ii) Uncertainty-Weighted Attention that marginalizes over token reliability, and (iii) Confidence-Guided Decision Shaping inspired by clinical risk minimization. Across biomedical QA and clinical prediction benchmarks (MedQA, PubMedQA, MIMIC-III), MedBayes-Lite consistently improves calibration and trustworthiness, reducing overconfidence by 32 to 48 percent. In simulated clinical settings, it can prevent up to 41 percent of diagnostic errors by flagging uncertain predictions for human review. These results demonstrate its effectiveness in enabling reliable uncertainty propagation and improving interpretability in medical AI systems.
翻译:我们提出了MedBayes-Lite,一种面向基于Transformer的临床语言模型的轻量级贝叶斯增强框架,旨在生成可靠且具备不确定性感知的预测。尽管Transformer在临床决策支持中展现出强大潜力,但其仍易产生过度自信,尤其在不确定性校准至关重要的模糊医疗案例中。MedBayes-Lite将不确定性量化直接嵌入现有Transformer流水线,无需重新训练或架构重构,不添加新的可训练层,并将参数量开销控制在3%以内。该框架整合了三个组件:(i) 基于蒙特卡洛Dropout的贝叶斯嵌入校准,用于认知不确定性;(ii) 不确定性加权注意力机制,对词元可靠性进行边缘化处理;(iii) 受临床风险最小化启发的置信度引导决策塑形。在生物医学问答和临床预测基准测试(MedQA、PubMedQA、MIMIC-III)中,MedBayes-Lite持续提升了校准性和可信度,将过度自信降低了32%至48%。在模拟临床环境中,通过标记不确定预测以供人工审核,可预防高达41%的诊断错误。这些结果证明了其在实现可靠不确定性传播和提升医疗人工智能系统可解释性方面的有效性。