Aligning generative diffusion models with human preferences via reinforcement learning (RL) is critical yet challenging. Most existing algorithms are often vulnerable to reward hacking, such as quality degradation, over-stylization, or reduced diversity. Our analysis demonstrates that this can be attributed to the inherent limitations of their regularization, which provides unreliable penalties. We introduce Data-regularized Diffusion Reinforcement Learning (DDRL), a novel framework that uses the forward KL divergence to anchor the policy to an off-policy data distribution. Theoretically, DDRL enables robust, unbiased integration of RL with standard diffusion training. Empirically, this translates into a simple yet effective algorithm that combines reward maximization with diffusion loss minimization. With over a million GPU hours of experiments and ten thousand double-blind human evaluations, we demonstrate on high-resolution video generation tasks that DDRL significantly improves rewards while alleviating the reward hacking seen in baselines, achieving the highest human preference and establishing a robust and scalable paradigm for diffusion post-training.


翻译:通过强化学习(RL)将生成式扩散模型与人类偏好对齐至关重要,但也充满挑战。现有算法大多容易受到奖励欺骗的影响,例如质量下降、过度风格化或多样性降低。我们的分析表明,这可以归因于其正则化方法的固有局限性,即提供了不可靠的惩罚。我们引入了数据正则化扩散强化学习(DDRL),这是一个新颖的框架,它使用前向KL散度将策略锚定在一个离策略的数据分布上。理论上,DDRL实现了强化学习与标准扩散训练的鲁棒、无偏集成。实证上,这转化为一个简单而有效的算法,将奖励最大化与扩散损失最小化相结合。通过超过一百万GPU小时的实验和一万次双盲人类评估,我们在高分辨率视频生成任务上证明,DDRL显著提升了奖励,同时缓解了基线模型中出现的奖励欺骗问题,获得了最高的人类偏好评分,并为扩散模型后训练建立了一个鲁棒且可扩展的范式。

0
下载
关闭预览

相关内容

在数学,统计学和计算机科学中,尤其是在机器学习和逆问题中,正则化是添加信息以解决不适定问题或防止过度拟合的过程。 正则化适用于不适定的优化问题中的目标函数。
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
【NeurIPS2022】SparCL:边缘稀疏持续学习
专知会员服务
24+阅读 · 2022年9月22日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
【NeurIPS2022】SparCL:边缘稀疏持续学习
专知会员服务
24+阅读 · 2022年9月22日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员