The paper proposes a novel approach for gray scale images segmentation. It is based on multiple features extraction from single feature per image pixel, namely its intensity value, using Echo state network. The newly extracted features -- reservoir equilibrium states -- reveal hidden image characteristics that improve its segmentation via a clustering algorithm. Moreover, it was demonstrated that the intrinsic plasticity tuning of reservoir fits its equilibrium states to the original image intensity distribution thus allowing for its better segmentation. The proposed approach is tested on the benchmark image Lena.


翻译:本文提出了灰度图像分割的新办法。 它基于从每个图像像素的单个特征中提取的多个特征, 即其强度值, 使用 Echo 状态网络 。 新提取的特征 -- -- 储油层平衡状态 -- -- 揭示了隐藏的图像特征, 通过群集算法改善了其分化。 此外, 已经证明储油层的内在可塑性调整使其平衡状态与原始图像密度分布相适应, 从而允许其更好的分化。 拟议的方法在基准图像Lena 上测试。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Top
微信扫码咨询专知VIP会员