相关内容

The tutorial is written for those who would like an introduction to reinforcement learning (RL). The aim is to provide an intuitive presentation of the ideas rather than concentrate on the deeper mathematics underlying the topic. RL is generally used to solve the so-called Markov decision problem (MDP). In other words, the problem that you are attempting to solve with RL should be an MDP or its variant. The theory of RL relies on dynamic programming (DP) and artificial intelligence (AI). We will begin with a quick description of MDPs. We will discuss what we mean by “complex” and “large-scale” MDPs. Then we will explain why RL is needed to solve complex and large-scale MDPs. The semi-Markov decision problem (SMDP) will also be covered.

The tutorial is meant to serve as an introduction to these topics and is based mostly on the book: “Simulation-based optimization: Parametric Optimization techniques and reinforcement learning” [4]. The book discusses this topic in greater detail in the context of simulators. There are at least two other textbooks that I would recommend you to read: (i) Neuro-dynamic programming [2] (lots of details on convergence analysis) and (ii) Reinforcement Learning: An Introduction [11] (lots of details on underlying AI concepts). A more recent tutorial on this topic is [8]. This tutorial has 2 sections: • Section 2 discusses MDPs and SMDPs. • Section 3 discusses RL. By the end of this tutorial, you should be able to • Identify problem structures that can be set up as MDPs / SMDPs. • Use some RL algorithms.

成为VIP会员查看完整内容
0
32
小贴士
相关资讯
TensorFlow 2.0深度强化学习指南
云栖社区
5+阅读 · 2019年2月1日
深度强化学习简介
专知
25+阅读 · 2018年12月3日
【微软亚研130PPT教程】强化学习简介
专知
23+阅读 · 2018年10月26日
ICML2018 模仿学习教程
专知
4+阅读 · 2018年7月14日
强化学习族谱
CreateAMind
7+阅读 · 2017年8月2日
相关论文
Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning
Prithviraj Ammanabrolu,Mark O. Riedl
4+阅读 · 2019年3月25日
Akash Mittal,Anuj Dhawan,Sourav Medya,Sayan Ranu,Ambuj Singh
3+阅读 · 2019年3月8日
Generalization and Regularization in DQN
Jesse Farebrother,Marlos C. Machado,Michael Bowling
4+阅读 · 2019年1月30日
Tuomas Haarnoja,Aurick Zhou,Sehoon Ha,Jie Tan,George Tucker,Sergey Levine
3+阅读 · 2018年12月26日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
3+阅读 · 2018年11月15日
Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning
Tom Zahavy,Matan Haroush,Nadav Merlis,Daniel J. Mankowitz,Shie Mannor
4+阅读 · 2018年9月6日
The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach
Iulian Vlad Serban,Chinnadhurai Sankar,Michael Pieper,Joelle Pineau,Yoshua Bengio
9+阅读 · 2018年7月12日
Benjamin Recht
4+阅读 · 2018年6月25日
Seyed Sajad Mousavi,Michael Schukat,Enda Howley
10+阅读 · 2018年6月23日
Matthias Plappert,Rein Houthooft,Prafulla Dhariwal,Szymon Sidor,Richard Y. Chen,Xi Chen,Tamim Asfour,Pieter Abbeel,Marcin Andrychowicz
3+阅读 · 2018年1月31日
Top