It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large $t$, $(1)$ a subdivision of the complete graph $K_t$, $(2)$ a subdivision of the complete bipartite graph $K_{t,t}$, $(3)$ a subdivision of the $(t \times t)$-wall and $(4)$ a line graph of a subdivision of the $(t \times t)$-wall. We are now able to add a further \emph{boundary object} to this list, a subdivision of a \emph{$t$-sail}. We identify hereditary graph classes of unbounded tree-width that do not contain any of the four basic obstructions but instead contain arbitrarily large $t$-sails or subdivisions of a $t$-sail. We also show that these sparse graph classes do not contain a minimal class of unbounded tree-width. These results have been obtained by studying \emph{path-star} graph classes, a type of sparse hereditary graph class formed by combining a path (or union of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet.


翻译:长期以来人们一直知道,以下基本物体是阻碍捆绑树壁的障碍物:对于任意大块的美元,1美元(1美元)是完整图形的一个小块,K_t美元,2美元(2美元)是完整的双部分图形的一个小块,Kät,t}美元,3美元(3美元)是美元(ttimes t) 墙形的一个小块,4美元(ttimes t) 墙形块的一个小块图。我们现在能够在这个列表中再增加一个\emph{线形对象},这是一张完整的图形图形的子。我们确定了不包含4个基本障碍的无边树形图形的遗传图形类别,而是含有任意大的$t-tayst-tails 或$t$-tail的子块。我们还表明,这些稀树形图形类并不包含起码的无边线树形类别。这些结果可能是通过通过一个不朽的图形图形的直径来研究,通过一个不朽的直观的图形图形图形的图形图状来获得的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员