Authorship analysis has traditionally focused on lexical and stylistic cues within text, while higher-level narrative structure remains underexplored, particularly for low-resource languages such as Urdu. This work proposes a graph-based framework that models Urdu novels as character interaction networks to examine whether authorial style can be inferred from narrative structure alone. Each novel is represented as a graph where nodes correspond to characters and edges denote their co-occurrence within narrative proximity. We systematically compare multiple graph representations, including global structural features, node-level semantic summaries, unsupervised graph embeddings, and supervised graph neural networks. Experiments on a dataset of 52 Urdu novels written by seven authors show that learned graph representations substantially outperform hand-crafted and unsupervised baselines, achieving up to 0.857 accuracy under a strict author-aware evaluation protocol.


翻译:传统的作者分析主要关注文本中的词汇与风格线索,而更高层次的叙事结构仍未被充分探索,尤其对于乌尔都语这类低资源语言。本研究提出一种基于图的框架,将乌尔都语小说建模为角色交互网络,以探究是否仅从叙事结构即可推断作者风格。每部小说被表示为一张图,其中节点对应角色,边表示角色在叙事邻近范围内的共现关系。我们系统比较了多种图表示方法,包括全局结构特征、节点级语义摘要、无监督图嵌入以及有监督图神经网络。在包含七位作者撰写的52部乌尔都语小说的数据集上进行的实验表明,学习得到的图表示显著优于手工构建和无监督基线方法,在严格的作者感知评估协议下准确率最高可达0.857。

0
下载
关闭预览

相关内容

【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
21+阅读 · 2022年3月8日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
21+阅读 · 2022年3月8日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
相关资讯
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员