We initiate the study of approximate maximum matching in the vertex partition model, for graphs subject to dynamic changes. We assume that the $n$ vertices of the graph are partitioned among $k$ players, who execute a distributed algorithm and communicate via message passing. An adaptive adversary may perform dynamic updates to the graph topology by inserting or removing edges between the nodes, and the algorithm needs to respond to these changes by adapting the output of the players, with the goal of maintaining an approximate maximum matching. The main performance metric in this setting is the algorithm's update time, which corresponds to the number of rounds required for updating the solution upon an adversarial change. For the standard setting of single-edge insertions and deletions, we give a randomized Las Vegas algorithm with an expected update time of $O( \lceil \frac{\sqrt{m}}{βk} \rceil )$ rounds that maintains a $\frac{2}{3}$-approximate maximum matching that is also maximal, where $m$ is the number of edges in the graph and $β$ is the available link bandwidth. For batch-dynamic updates, where the adversary may insert up to $\ell\ge 1$ edges at once, we prove the following. There is a randomized algorithm that succeeds with high probability in maintaining a $\frac{2}{3}$-approximate maximum matching and has a worst case update time of $O(\lceil\frac{\ell\log n}{\sqrt{βk}}\rceil )$ rounds. Any algorithm for maintaining a maximal matching without 3-augmenting paths under batches of $\ell$-edge insertions has an update time of $Ω( \frac{\ell}{βk \log n} )$ rounds in the worst case.


翻译:本文首次研究了在动态变化图上的顶点划分模型中的近似最大匹配问题。我们假设图的 $n$ 个顶点被划分给 $k$ 个参与者,这些参与者执行分布式算法并通过消息传递进行通信。一个自适应敌手可以通过插入或移除节点之间的边来动态更新图的拓扑结构,而算法需要通过调整参与者的输出来响应这些变化,以维持一个近似最大匹配。在此设定下的主要性能指标是算法的更新时间,即应对敌手变化后更新解所需的轮数。针对单边插入和删除的标准场景,我们提出了一种随机化 Las Vegas 算法,其期望更新时间为 $O( \lceil \frac{\sqrt{m}}{βk} \rceil )$ 轮,能够维持一个 $\frac{2}{3}$ 近似且极大的最大匹配,其中 $m$ 为图的边数,$β$ 为可用链路带宽。对于批量动态更新场景(敌手可一次性插入最多 $\ell\ge 1$ 条边),我们证明了以下结论:存在一种随机化算法,能以高概率成功维持 $\frac{2}{3}$ 近似最大匹配,其最坏情况更新时间为 $O(\lceil\frac{\ell\log n}{\sqrt{βk}}\rceil )$ 轮。任何在 $\ell$ 条边批量插入场景下维持无 3-增广路径极大匹配的算法,其最坏情况更新时间至少为 $Ω( \frac{\ell}{βk \log n} )$ 轮。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员