There has been a recent surge of interest in the study of asymptotic reconstruction performance in various cases of generalized linear estimation problems in the teacher-student setting, especially for the case of i.i.d standard normal matrices. Here, we go beyond these matrices, and prove an analytical formula for the reconstruction performance of convex generalized linear models with rotationally-invariant data matrices with arbitrary bounded spectrum, rigorously confirming, under suitable assumptions, a conjecture originally derived using the replica method from statistical physics. The proof is achieved by leveraging on message passing algorithms and the statistical properties of their iterates, allowing to characterize the asymptotic empirical distribution of the estimator. For sufficiently strongly convex problems, we show that the two-layer vector approximate message passing algorithm (2-MLVAMP) converges, where the convergence analysis is done by checking the stability of an equivalent dynamical system, which gives the result for such problems. We then show that, under a concentration assumption, an analytical continuation may be carried out to extend the result to convex (non-strongly) problems. We illustrate our claim with numerical examples on mainstream learning methods such as sparse logistic regression and linear support vector classifiers, showing excellent agreement between moderate size simulation and the asymptotic prediction.
翻译:最近,人们对于在师生环境中普遍线性估计问题的各种情况下,特别是在i.d标准正常矩阵的情况下,对非现成重建绩效的研究表现出了浓厚的兴趣。在这里,我们超越了这些矩阵,并证明一个分析公式,用于使用任意封闭频谱的旋转不定数据矩阵的 convex通用线性模型的重建绩效,在适当假设下,严格证实最初使用统计物理复制法得出的推测。通过利用信息传递算法及其中继者的统计属性,从而得以证明这一点,从而能够确定估计师生的无现成经验分布特征。对于足够强烈的混杂问题,我们表明,两层矢量近似信息传递算法(2-MLVAMP)在进行趋同式分析时,通过检查对应的动态系统稳定性,从而得出这类问题的结果。然后,我们表明,在集中假设下,可以继续进行分析,将结果扩大到 convex(非坚固的)问题,从而可以定性地定性地对估测算器的分布进行定性。我们用精确的精确度分析模型来说明我们的主张,将精度分析,将精度的精确度的模型显示,将精确度的精确度分析方法作为典型的精确度分析,作为典型的精确度的精确度分析结果。