Machine-learning based methods like physics-informed neural networks and physics-informed neural operators are becoming increasingly adept at solving even complex systems of partial differential equations. Boundary conditions can be enforced either weakly by penalizing deviations in the loss function or strongly by training a solution structure that inherently matches the prescribed values and derivatives. The former approach is easy to implement but the latter can provide benefits with respect to accuracy and training times. However, previous approaches to strongly enforcing Neumann or Robin boundary conditions require a domain with a fully $C^1$ boundary and, as we demonstrate, can lead to instability if those boundary conditions are posed on a segment of the boundary that is piecewise $C^1$ but only $C^0$ globally. We introduce a generalization of the approach by Sukumar \& Srivastava (doi: 10.1016/j.cma.2021.114333), and a new approach based on orthogonal projections that overcome this limitation. The performance of these new techniques is compared against weakly and semi-weakly enforced boundary conditions for the scalar Darcy flow equation and the stationary Navier-Stokes equations.


翻译:基于机器学习的方法,如物理信息神经网络和物理信息神经算子,正日益擅长求解复杂的偏微分方程组。边界条件可通过两种方式强制实施:一种是在损失函数中惩罚偏差进行弱强制,另一种是通过训练一种固有匹配指定值和导数的解结构进行强强制。前者易于实现,但后者在精度和训练时间方面可能带来优势。然而,先前强强制实施诺伊曼或罗宾边界条件的方法要求定义域具有完全$C^1$边界,并且如我们所示,如果这些边界条件施加在分段$C^1$但整体仅为$C^0$的边界段上,可能导致不稳定性。我们引入了Sukumar & Srivastava(doi: 10.1016/j.cma.2021.114333)方法的推广,以及一种基于正交投影的新方法,以克服这一限制。这些新技术的性能与弱强制及半弱强制边界条件在标量达西流动方程和稳态纳维-斯托克斯方程中进行了比较。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员