Randomized Smoothing (RS) is a prominent technique for certifying the robustness of neural networks against adversarial perturbations. With RS, achieving high accuracy at small radii requires a small noise variance, while achieving high accuracy at large radii requires a large noise variance. However, the global noise variance used in the standard RS formulation leads to a fundamental limitation: there exists no global noise variance that simultaneously achieves strong performance at both small and large radii. To break through the global variance limitation, we propose a dual RS framework which enables input-dependent noise variances. To achieve that, we first prove that RS remains valid with input-dependent noise variances, provided the variance is locally constant around each input. Building on this result, we introduce two components which form our dual RS framework: (i) a variance estimator first predicts an optimal noise variance for each input, (ii) this estimated variance is then used by a standard RS classifier. The variance estimator is independently smoothed via RS to ensure local constancy, enabling flexible design. We also introduce training strategies to iteratively optimize the two components. Extensive experiments on CIFAR-10 show that our dual RS method provides strong performance for both small and large radii-unattainable with global noise variance-while incurring only a 60% computational overhead at inference. Moreover, it consistently outperforms prior input-dependent noise approaches across most radii, with particularly large gains at radii 0.5, 0.75, and 1.0, achieving relative improvements of 19%, 24%, and 21%, respectively. On ImageNet, dual RS remains effective across all radii. Additionally, the dual RS framework naturally provides a routing perspective for certified robustness, improving the accuracy-robustness trade-off with off-the-shelf expert RS models.
翻译:随机平滑(RS)是一种用于认证神经网络对抗对抗性扰动鲁棒性的重要技术。在RS中,要在小半径下实现高精度需要较小的噪声方差,而在大半径下实现高精度则需要较大的噪声方差。然而,标准RS公式中使用的全局噪声方差存在一个根本性限制:不存在一个全局噪声方差能够同时在小半径和大半径下实现强性能。为了突破全局方差的限制,我们提出了一个双重RS框架,该框架支持输入依赖的噪声方差。为此,我们首先证明,只要方差在每个输入附近局部恒定,RS在输入依赖噪声方差下仍然有效。基于这一结果,我们引入了构成双重RS框架的两个组件:(i)一个方差估计器首先预测每个输入的最优噪声方差;(ii)该估计方差随后被标准RS分类器使用。方差估计器通过RS独立平滑以确保局部恒定性,从而实现灵活设计。我们还引入了迭代优化这两个组件的训练策略。在CIFAR-10上的大量实验表明,我们的双重RS方法在小半径和大半径下均提供了强性能——这是全局噪声方差无法实现的——同时在推理时仅产生60%的计算开销。此外,在大多数半径下,它始终优于先前的输入依赖噪声方法,特别是在半径0.5、0.75和1.0处取得了显著提升,相对改进分别达到19%、24%和21%。在ImageNet上,双重RS在所有半径下均保持有效。此外,双重RS框架自然地提供了认证鲁棒性的路由视角,通过现成的专家RS模型改善了精度-鲁棒性权衡。