We consider data-driven approaches that integrate a machine learning prediction model within distributionally robust optimization (DRO) given limited joint observations of uncertain parameters and covariates. Our framework is flexible in the sense that it can accommodate a variety of regression setups and DRO ambiguity sets. We investigate asymptotic and finite sample properties of solutions obtained using Wasserstein, sample robust optimization, and phi-divergence-based ambiguity sets within our DRO formulations, and explore cross-validation approaches for sizing these ambiguity sets. Through numerical experiments, we validate our theoretical results, study the effectiveness of our approaches for sizing ambiguity sets, and illustrate the benefits of our DRO formulations in the limited data regime even when the prediction model is misspecified.


翻译:我们考虑了将机器学习预测模型纳入分布式强力优化(DRO)中的数据驱动方法,因为对不确定参数和共变因素的联合观察有限。我们的框架是灵活的,因为它可以容纳各种回归设置和DRO模棱两可的组合。我们调查了利用瓦瑟斯坦(Wasserstein)获得的解决方案的无症状和有限的样本性质、强效优化样本和基于视窗的模棱两可的模棱两可特征,并探索了缩小这些模棱两可的交叉校准方法。我们通过数字实验验证了我们的理论结果,研究了我们将模棱两可的组合化方法的有效性,并说明了即使在预测模型被错误描述的情况下,我们的DRO配方在有限的数据制度中的好处。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员