Maximal Extractable Value (MEV) refers to a class of attacks to decentralized applications where the adversary profits by manipulating the ordering, inclusion, or exclusion of transactions in a blockchain. Decentralized Finance (DeFi) protocols are a primary target of these attacks, as their logic depends critically on transaction sequencing. To date, MEV attacks have already extracted billions of dollars in value, underscoring their systemic impact on blockchain security. Verifying the absence of MEV attacks requires determining suitable upper bounds, i.e. proving that no adversarial strategy can extract more value (if any) than expected by protocol designers. This problem is notoriously difficult: the space of adversarial strategies is extremely vast, making empirical studies and pen-and-paper reasoning insufficiently rigorous. In this paper, we present the first mechanized formalization of MEV in the Lean theorem prover. We introduce a methodology to construct machine-checked proofs of MEV bounds, providing correctness guarantees beyond what is possible with existing techniques. To demonstrate the generality of our approach, we model and analyse the MEV of two paradigmatic DeFi protocols. Notably, we develop the first machine-checked proof of the optimality of sandwich attacks in Automated Market Makers, a fundamental DeFi primitive.
翻译:暂无翻译