We address the problem of quickest change detection in Markov processes with unknown transition kernels. The key idea is to learn the conditional score $\nabla_{\mathbf{y}} \log p(\mathbf{y}|\mathbf{x})$ directly from sample pairs $( \mathbf{x},\mathbf{y})$, where both $\mathbf{x}$ and $\mathbf{y}$ are high-dimensional data generated by the same transition kernel. In this way, we avoid explicit likelihood evaluation and provide a practical way to learn the transition dynamics. Based on this estimation, we develop a score-based CUSUM procedure that uses conditional Hyvarinen score differences to detect changes in the kernel. To ensure bounded increments, we propose a truncated version of the statistic. With Hoeffding's inequality for uniformly ergodic Markov processes, we prove exponential lower bounds on the mean time to false alarm. We also prove asymptotic upper bounds on detection delay. These results give both theoretical guarantees and practical feasibility for score-based detection in high-dimensional Markov models.
翻译:本文研究具有未知转移核的马尔可夫过程中的快速变点检测问题。核心思想是直接从样本对$(\\mathbf{x},\\mathbf{y})$中学习条件分数$\\nabla_{\\mathbf{y}} \\log p(\\mathbf{y}|\\mathbf{x})$,其中$\\mathbf{x}$和$\\mathbf{y}$均为同一转移核生成的高维数据。该方法避免了显式似然估计,为学习转移动态提供了实用途径。基于此估计,我们开发了一种基于分数的CUSUM(累积和)检测程序,利用条件Hyvarinen分数差异来检测转移核的变化。为确保增量有界,我们提出了该统计量的截断版本。结合一致遍历马尔可夫过程的Hoeffding不等式,我们证明了误报平均时间的指数下界,并给出了检测延迟的渐近上界。这些结果为高维马尔可夫模型中基于分数的检测方法提供了理论保证与实践可行性。